
Scheduled Migration in Distributed Systems

Gabriel Ciobanu

Romanian Academy, Institute of Computer Science

700505 Iasi, Romania

http://www.info.uaic.ro/~gabriel

FROM 2017

Bucharest, 5th July 2017

Timed Migration and Interaction in World Wide Web

Basic Features of TiMo

Modelling distributed systems with time-related aspects

Simple process algebra:

locations+ mobility + interaction + timers

Local interaction (communication) and local clocks

Communication of locations between processes

Migration is no-urgent, modelling network delays

Interaction (communication) is not delayed

Discrete time semantics + maximal concurrency

Example: simple e-shops

In this scenario, we have a client process which initially resides

in the home location, and wants to find an address of an e-

shop where different kinds of electronic items (e-items) can be

purchased.

To find out the address of a suitable e-shop, the client, within 2

time units, moves to the location info in order to acquire the

relevant address.

The location info contains a broker who knows all about the

availability of the e-shops stocking the desired e-item. In the

first 5 time units the right e-shop is the one at the location

shopA , and after that for 7 time units that at location shopB .

Example: simple e-shops

Since interaction happens within the same location, it is

necessary for the client process to move to the broker location

in order to find out about the e-item.

The timers can define a coordination in time and space of the

client, and take care of the relative time of interaction of the

processes residing at the same location.

Example: simple e-shops

● The specification of the running example which captures the essential

features of the scenario described previously can then be written down

in the following way:

SES = home[Client] | info[Broker]

| shopA[] | shopB[~]

● where:

Client = goΔ2 info . (aΔ2 ? (shop) then goΔ0 shop

 else goΔ0 home)

Broker = aΔ5 ! <shopA> then 0

 else aΔ7 ! <shopB>

Example: simple e-shops

home info

shopA shopB

go Δ2 info

a! Δ5 <shopA>

a

a
0:0 0:0

0:00:0

Example: simple e-shops

home info

shopA shopB

go Δ2 info

a! Δ5 <shopA>

a

a
0:0 0:0

0:10:0

Example: simple e-shops

home info

shopA shopB

go Δ2 info

a! Δ4 <shopA>

a

a
0:0 0:1

0:10:0

Example: simple e-shops

home info

shopA shopB

go Δ1 info

a! Δ4 <shopA>

a

a
0:1 0:1

0:10:0

Example: simple e-shops

home info

shopA shopB

go Δ0 info

a! Δ4 <shopA>

a

a
0:2 0:1

0:10:0

Example: simple e-shops

home info

shopA shopB

go Δ0 info

a! Δ4 <shopA>

a

a
0:2 0:1

0:10:0

+a

Example: simple e-shops

home info

shopA shopB

a! Δ4 <shopA>
a

0:3 0:1

0:10:0

a? Δ2 shop
a

Example: simple e-shops

home info

shopA shopB

a! Δ4 <shopA>
a

0:3 0:1

0:20:0

a? Δ2 shop
a

Example: simple e-shops

home info

shopA shopB

a! Δ4 <shopA>
a

0:3 0:1

0:20:0

a? Δ2 shop
a

Example: simple e-shops

home info

shopA shopB

a
0:3 0:1

0:20:0

a

Example: simple e-shops

home info

shopA shopB

a
0:3 0:2

0:20:0

go Δ0 shopA
a

Example: simple e-shops

home info

shopA shopB

a
0:3 0:2

0:20:0

go Δ0 shopA
a

Example: simple e-shops

home info

shopA shopB

a
0:3 0:3

0:20:0

a

 TiMo Syntax

a b c ... channels (names)
k m ... locations

aΔt ?(u) then P else Q input

aΔt !<v> then P else Q output

goΔt v then P mobility

stop do nothing

 TiMo Syntax

P | Q parallel

 P stalled process

id(u1, u2, ...) process identifier

N | M network

Γ Γ’ ... sets of access permissions

P: Γ process with access permissions

k [PP] located process with permissions

Output / Input - intuition

aΔt !<v> then P else Q

can send v over channel a if put<a@k> is present for t time

units and continue as P; if unsuccessful, continues as Q

aΔt ?(u) then P else Q

can input some value if get<a@k> is present for t time units,

and substitute it for variable u within its body (u is bound

within P, but not within Q); then continues as P; if

unsuccessful, continues as Q

Migration - intuition

goΔt u then P

 waits for t time units before migrating and continuing as P

u can be assigned value dynamically through

communication with other processes

TiMo Operational Semantics

(MOVE)

k [goΔ0 m then P] m [P]

(WAIT)

k [goΔt m then P] k [goΔt-1 m then P]

(COM)

k [a!Δt <v> then P else Q | a?Δt' (u) then P’ else Q’]

 k [P | {v/u}P’]

k:m

k

a(v)@k

TiMo Operational Semantics Rule (TIME)

(TIME)

N φk(N)

applicable if the other action rules cannot be applied at

location k (maximal progress at a location k)

φk (N) updates timer values, selects continuations, and

removes ’s

√k

Execution (operational semantics)

√m

k [goΔ2 m . a?Δ1 (u).P] | m [a!Δ3 <h>]

k:m

@k

k [goΔ1 m . a?Δ1 (u).P] | m [a!Δ3 <h>] √k

(WAIT)

(TIME)

k [goΔ0 m . a?Δ1 (u).P] | m [a!Δ3 <h>] (MOVE)

m [a?Δ1 (u).P | a!Δ3 <h>] (TIME)

 m [a?Δ1 (u).P | a!Δ2 <h>] a(h)@m (COM)

m [{h/u}P | 0] √m (TIME)

m [{h/u}P | 0]

k [goΔ2 m . a?Δ1 (u).P] | m [a!Δ4 <h>] √m (TIME)

x then P else 0 is x . P

x then 0 else 0 is x

Structural equivalence

(EQ1)

M | N ≡ N | M

(EQ2)

(M | N) | N' ≡ M | (N | N')

(EQ3)

k [PP | QQ] ≡ k [PP] | k [QQ]

(EQ4)

k [P | Q : Γ] ≡ k [P: Γ | Q: Γ]

They allow a finite component decomposition of networks unique up

to the permutations of the components.

Operational semantics rule on structure

(EQUIV)

N ≡ N' N M M ≡ M'

 N' M'

λ

λ

Operational semantics (network)

Cumulative effect of actions at location k:

N ... M

if N is well formed (e.g. no ’s)

then M is well formed

and for Ψ the multiset of all actions λi

N MΨ

√kλ1 λn

 Semantic Consistency

Assumption: N … M

PROPOSITION

n ≤ the number of parallel components in N

 (no unbounded sequence of actions without time progress)

PROPOSITION

λ1 ... λn can be permuted and still reach M.

PROPOSITION

Networks reachable from a well-formed network are well-formed.

It is proved a structural translation into equivalent Petri nets.

λn √kλ1

Structural Translation of TiMo into Petri nets

Compositional translation from TiMo expressions to high

level Petri nets with time constraints

The resulting net is finite

The transition system of the resulting net is strongly bisimilar

to the transition system of the original TiMo expression

Petri net representation provides model-checking techniques

and tools + non-interleaving semantics model

PerTiMo: TiMo with access permissions

Security aspects expressed by access permissions
Access permissions may be lost/gained when moving

put<b@k> to send to channel b at location k

get<b@k> to receive from channel b at location k

Γ set of access permissions of a migrating process

apm(k,m)(Γ) change of access permissions of Γ when
 moving from k to m

Example:

Put-
b@k(Γ) = Γ - {put<b@k>}

Safe access permissions

AIM:

 ... to verify that migrating process has sufficient access
permissions to enable participation in all potential future

communications, and never an unauthorized attempt happens
during network evolutions ...

METHOD:

use judgements of the form:

Γ├k P

meaning that:

Γ are safe access permissions
for P when it is started up at location k

Main results for PerTiMo

THEOREM 1 (soundness)

Having safe access permissions is preserved over the operational
semantics rules

THEOREM 2 (safety of communications)

Processes with safe access permissions are not prevented from
participating in communications with other processes

THEOREM 3 (completeness)

Processes without safe access permissions can be placed in a
context which blocks a potential communication.

 Travel e-Shop Example

A travel shop system composed of
● six processes
● five locations

The transition system of the resulting net is strongly bisimilar to
the transition system of the original TiMo expression

Travel e-Shop Example

A possible final network after 22 units of time is:
The transition system of the resulting net is strongly bisimilar to
the transition system of the original TiMo expression

Property Definitions

Constraints

Bounded constraint: , where ;

Optimal constraints: max(expr) or min(expr);

Reachability property: .

Process migration property: P@loc;

Bounded Liveness Property

E.g., if client is able to arrive at location paying within 10 time units.

Optimized Reasoning

E.g., to find an execution path for process client to arrive at a
certain location paying with the shortest time

Automatic Analysis in PAT

PAT is a extensible framework for developing domain-specific
model checkers

 TiMo@PAT Framework

Modularized design

Over 2640 registered users, over 600 organizations

TiMo@PAT: automatic verification of TiMo systems

Properties Definitions

Experiments Results

R1, R2: reachability properties;

BL1, BL2: bounded liveness properties;

OR1, OR2: optimized properties;

DF: deadlockfree

 From TiMo to pTiMo (a quantitative approach)

In order to allow a quantitative examination of behaviours, we

add probabilities to TiMo, resulting in the new language pTiMo

(probabilistic TiMo).

Accordingly, pTiMo models are no longer labelled transitions

systems (LTSs), like in TiMo, but instead they are labelled

discrete-time Markov chains (DTMCs).

Adding quantitative aspects in pTiMo

Typical properties:

TiMo: "can a given system reach a certain state before t1 time

steps have elapsed at location l1?"

versus

pTiMo: "what is the probability that a given system reaches a

certain state before t1 time steps have elapsed at location l1?"

Sources of non-determinism

In pTiMo we treat the sources of non-determinism in the following way:

1. split complete computational steps into:

 a part containing only potential movements

 a part containing only potential communications

2. define discrete probability distributions for each part, individually

3. define discrete probability distributions for location selections

4. combine the resulting probability distributions into joint distributions

Probabilistic logic PLTM for pTiMo

As a means of investigating the behaviour of pTiMo networks, we
define a new logic, named PLTM (Probabilistic Logic for Timed
Mobility).

PLTM includes features such as:

 properties for short-run and long-run behaviour

 explicit references to locations and processes

 temporal constraints over local clocks, both finite and infinite

 complex action guards over multisets of
transitions (i.e.,complete computational steps)

Examples of PLTM properties

Some properties which can be verified in PLTM:

 "with probability greater than 0.5, the process P1 will

communicate at location l1, on channels a1 or a3, before 3

time steps have elapsed at location l1, and 4 time steps have

elapsed at location l2“

 "the long-run probability that no movement occurs during a

complete transition is less than 0.3"

PLTM Syntax

By employing atomic propositions, action guards and temporal
constraints, the syntax of PLTM can be defined in terms of the
following path and steady-state properties:

where prop is an atomic proposition, p is a probability,

 is a guard over complete transitions, t is a temporal constraint.

rTiMo: a real-time extension of TiMo

A real-time extension of TiMo named rTiMo, uses real-time and
explicit timeouts

 it is useful for expressing certain temporal
properties of multi-agent systems with migration and
time constraints.

In rTiMo, the discrete transitions caused by performing actions
with timeouts are alternated with continuous transitions.

rTiMo: a real-time extension of TiMo

Although the syntax of rTiMo is quite close to that of TiMo, its
semantics is different in many aspects:

 the number of semantic rules (higher in rTiMo),
 number of clocks,
 time nature (continuous or discrete),
 systems evolution.

rTiMo vs TiMo

 deadline in rTiMo is a positive real number,
while in TiMo it is a natural number;

 clock in rTiMo is a single global clock,
 while in TiMo there are local clocks (for each location);
 time step in rTiMo can have any length,
 while in TiMo it has length 1 (at each location);
 passage of time in rTiMo is performed by delay rules,
in contrast with TiMo where in each location l there is a
local function φl that is used to decrement all timers by
1 at location l;

 rTiMo vs TiMo

 evolution step in rTiMo is a sequence of individual actions
followed by the passing of time, in contrast with TiMo where an
evolution step is a sequence of individual actions happening at
the same location l, followed by the passing of time and
elimination of all special symbols at location l;
 is a purely technical notation used in the formalisation of the
structural operational semantics of TiMo; intuitively, P specifies a
process P which is temporarily stalled, and so cannot execute any
action.

Foundations of Informatics

Example

The use of rTiMo for specifying critical systems is illustrated by

considering a railway bridge controller, a real-time problem

concerned with the control of accessing a mobile bridge by several

trains leaving a depot according to the rule that the bridge can be

accessed only by one train at a time.h

Example

We use a small toy example in which the system is defined as:

● a number of three trains,

● two railways

● a bridge that can be up or downdown.

The initial system is described in rTiMo by:

railway1a[[train1 | train3]] | railway1b[[0]]

| railway2a[[train2]] | railway2b[[0]]

| bridge[[operate | control1]]

rTiMo: a real-time extension of TiMo

 We established a relationship between rTiMo and timed automata

 allowing the use of model checking capabilities provided by
UPPAAL to verify several temporal properties of distributed
networks with migrating and communicating processes
described in rTiMo.

TiMo and Event-B

 We use the Event-B modelling method as the target for
translating TIMO specifications

 We utilise the supporting Rodin platform of Event-B to verify
system properties using the embedded theorem-provers and
model checkers.

 The main feature of our encoding include a generic model
capturing the syntax and semantics of TIMO, together with a
concrete model corresponding to each specific TIMO
specification.

TiMo and Event-B

■ State-transition model (like ASM, B, Z)
 ■ set theory as mathematical language
 ■ refinement as basic modeling approach

■ Contexts
 ■ carrier sets (domains)
 ■ constants
 ■ axioms

■ Machines
 ■ global variables
 ■ invariants
 ■ events that update the variables

■ Events
 ■ local parameters
 ■ guards
 ■ actions

TiMo and Event-B

Once we have our Event-B model we can use the verification tools of Rodin:

 ■ Model checking (ProB) can verify properties such as:
 ■ “the two customers cannot be at the same shop at the same time”, or
 ■ “once the customer left home, s/he will not go home”
 ■ (counterexamples were found for both of the above)

 ■ Theorem proving can reason:
 ■ on the generic model - e.g. well-formedness (using invariants), or
 ■ on the concrete model

 ■ Parameterised verification
 ■ using theorem proving, we can verify parameterised versions of
 the models (i.e. timers not fixed, but depend on the number of
 processes)
 ■ this is not feasible with model checking,
 ■ but not easy with theorem proving either
 (less than 40% of the proofs were discharged automatically)

Concluding Remarks

 TiMo models distributed systems with time and mobility

 It has a simple syntax, but can model complex systems with
respect to time and mobility.
 Timing constraints for migration and communication.
 Local clocks and maximal parallelism of actions.
 Security aspects expressed by dynamic access permissions
(access permissions may be lost or gained by processes when
moving).
 An operational semantics and formal results.
 A sound and complete system for safe communication and
migration in open networks.

Concluding remarks

 pTiMo allows probabilistic behaviour of TiMo networks by solving
the non-determinism involved in movement, communication and
selection of active locations.
 PLTM: a probabilistic temporal logic for pTiMo

check properties with explicit reference to locations and processes
impose temporal constraints over local clocks (i.e., finite or

infinite upper bounds, for each location independently)
define complex action guards over multisets of actions found in other logics

 A link between rTiMo and timed automata allows model checking
by UPPAAL to verify temporal properties of distributed networks
with migration and communication.

 Many Thanks to Collaborators!

 G. Ciobanu, M. Koutny. Modelling and
Verification of Timed Interaction and Migration. In
Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science,
vol.4961, 215–229, 2008.

 G. Ciobanu, M. Koutny. Timed Migration and
Interaction with Access Permissions. In 17th
International Symposium on Formal Methods,
Lecture Notes in Computer Science, vol.6664,
293–307, 2011.

Maciej Koutny (Newcastle University)

G. Ciobanu, M. Koutny. Timed Mobility in Process

Algebra and Petri nets. Journal of Logic and
Algebraic Programming, vol.80(7), 377–391, 2011.

B. Aman, G. Ciobanu, M. Koutny. Behavioural

Equivalences over Migrating Processes with

Timers. FMOODS/FORTE 2012, Lecture Notes in
Computer Science, vol.7273, 52–66, 2012.

 G. Ciobanu, M. Koutny. PerTiMo: A Model of
Spatial Migration with Safe Access Permissions.
Comput. Journal vol. 58(5), 1041-1060, 2015.

Bogdan Aman (IIT, Iasi)

 B. Aman, G. Ciobanu, M. Koutny. Behavioural

Equivalences over Migrating Processes with

Timers. FMOODS/FORTE 2012, Lecture Notes in
Computer Science, vol.7273, 52–66, 2012.

 B. Aman, G. Ciobanu. Real-Time Migration

Properties of rTiMo Verified in Uppaal. SEFM
2013, Lecture Notes in Computer Science,
vol.8137, 31-45, 2013.

B. Aman, G. Ciobanu. Timed Mobility and Timed

Communication for Critical Systems. FMICS 2015,
Lecture Notes in Computer Science, vol. 9128,
146-161, 2015.

Calin Juravle (Google, London)

 G. Ciobanu, C. Juravle. A Software Platform for
Timed Mobility and Timed Interaction. FORTE /
FMOODS, Lecture Notes in Computer Science,
vol.5522, 106–121, 2009.

 G. Ciobanu, C. Juravle. Mobile Agents with
Timers, and Their Implementation. Intelligent
Distributed Computing IV. Studies in
Computational Intelligence, vol.315, Springer,
229–239, 2010.

 G. Ciobanu, C. Juravle. Flexible Software Architecture and Language for
Mobile Agents. Concurrency and Computation: Practice and Experience,
vol.24(6), 559–571, 2012.

Jason Steggles (Newcastle University)

 G. Ciobanu, M. Koutny, J. Steggles. A Timed

Mobility Semantics Based on Rewriting Strategies.
SEFM 2012, Lecture Notes in Computer Science,
vol.7504, 141–155, 2012.

 G. Ciobanu, M. Koutny, J. Steggles. Strategy

based semantics for mobility with time and access

permissions. Formal Aspects of Computing vol.
27(3): 525-549, 2015.

Thai Son Hoang (Hitachi Ltd., Japan)

 G. Ciobanu, T.S. Hoang, A. Stefanescu. From

TiMo to Event-B: Event-Driven Timed Mobility.
ICECCS 2014 (best paper award).

Alin Stefanescu (Bucharest, Romania)

 G. Ciobanu, T.S. Hoang, A. Stefanescu. From

TiMo to Event-B: Event-Driven Timed Mobility.
ICECCS 2014 (best paper award).

Armand Rotaru (UCL, London)

 G. Ciobanu, A. Rotaru. A Probabilistic Logic for
PTIMO . In 10th International Colloquium on
Theoretical Aspects of Computing, Lecture Notes
in Computer Science, vol.8049, 141–158, 2013.

Manchun Zheng (NUS, Singapore)

 G. Ciobanu, M. Zheng. Automatic Analysis of
TIMO Systems in PAT. In 18th International
Conference on Engineering of Complex Computer
Systems, 121-124, IEEE, 2013.

Thank
You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

