Gabriel Ciobanu

Romanian Academy, Institute of Computer Science

700505 Iasi, Romania

http://www.info.uaic.ro/~gabriel

FROM 2017
Bucharest, 5th July 2017

Modelling distributed systems with time-related aspects

Simple process algebra:

locations+ mobillity + interaction + timers
Local interaction (communication) and local clocks
Communication of locations between processes
Migration is no-urgent, modelling network delays
Interaction (communication) is not delayed

Discrete time semantics + maximal concurrency

® In this scenario, we have a client process which initially resides
In the home location, and wants to find an address of an e-
shop where different kinds of electronic items (e-items) can be
purchased.

® To find out the address of a suitable e-shop, the client, within 2
time units, moves to the location info In order to acquire the
relevant address.

® The location info contains a broker who knows all about the
availability of the e-shops stocking the desired e-item. In the
first 5 time units the right e-shop is the one at the location
shopA , and after that for 7 time units that at location shopB .

® Since Interaction happens within the same location, It Is
necessary for the client process to move to the broker location

In order to find out about the e-item.

® The timers can define a coordination in time and space of the
client, and take care of the relative time of interaction of the

processes residing at the same location.

* The specification of the running example which captures the essential
features of the scenario described previously can then be written down
In the following way:

SES = home[Client] | info[Broker]
| shopA[| | shopB[~]

* where:

Client = go® info . (a*° ? (shop) then go“° shop
else go*° home)
Broker = a*° | <shopA> then 0

else a*” | <shopB>

a b c .. channels (names)
K m ... locations

a’t?(u) then P else Q iInput

attl<v>then P else Q output
go®vthenP mobility

stop do nothing

P|Q parallel

S)P stalled process

id(ul, uz, ...) process identifier

N| M network

I sets of access permissions

P process with access permissions
K [PP] located process with permissions

attI<v>then P else Q

can send v over channel a if put<a@k> is present for t time

units and continue as P; if unsuccessful, continues as Q

a’ ?(u) then P else Q

can input some value if get<a@k> Is present for t time units,
and substitute it for variable u within its body (u is bound
within P, but not within Q); then continues as P; If

unsuccessful, continues as Q

go®tu then P
waits for t time units before migrating and continuing as P

u can be assigned value dynamically through

communication with other processes

(MOVE)
k [go*° m then P]@ m [@P]
(WAIT)

k [go® m then P] [k_) k [(S) go* m then P]

(COM)
k[al*<v>then P else Q | a?2'(u) then P’ else Q' |

a<V>@k> K[OP | & {viupp]

® applicable if the other action rules cannot be applied at

location k (maximal progress at a location k)

® ¢, (N) updates timer values, selects continuations, and

removes(S) ’s

k[go*m.a?* (u).P] | m[al*<h>]

K[go® m. a2 (u).P] | m[al <h>]
K[(@)0* m. a2 (u).P] | m[a <h>]
K[go® m.a?: (u).P] | m[al <h>]
m [(82 (u).P | a®® <h>]

m[a?* (u).P | al®?<h>]

m [(S)n/u}P |(S)0]
X then P else O

m [{h/u}P | ()] X then O else 0 is x

is Xx.P

3

@
=

=~

k

m

a(hy@m

NEREET

(EQ1)
M|N=N|M

(EQ2)
(MIN) [N"=M](N|N)

(EQ3)
k[PP[QQ]=k[PP][k[QQ]

(EQ4)
K[P|Q:T]=k[P:T |Q:T]

They allow a finite component decomposition of networks unigue up

to the permutations of the components.

(EQUIV)

N

N’ Nl A DM M=M

Cumulative effect of actions at location k:
N) ..)\n> \/k>|\/|

® if N is well formed (e.g. no @’s)
® then M is well formed

and for W the multiset of all actions Al

N[v > M

Assumption: N | A1) An> \/k>’|

PROPOSITION
n < the number of parallel components in N

(no unbounded sequence of actions without time progress)
PROPOSITION

Al ... A\n can be permuted and still reach M.
PROPOSITION

Networks reachable from a well-formed network are well-formed.

© Itis proved a structural translation into equivalent Petri nets.

® Compositional translation from TiMo expressions to high

level Petri nets with time constraints
® The resulting net is finite

® The transition system of the resulting net is strongly bisimilar

to the transition system of the original TiMo expression

© Petri net representation provides model-checking techniques

and tools + non-interleaving semantics model

Security aspects expressed by access permissions

put<b@k> to send to channel b at location k
get<b@k> to receive from channel b at location k
[set of access permissions of a migrating process

apm(k,m)(I') change of access permissions of I' when
moving from k to m

Example:
Put,, (N = T -{put<b@k>}

AlM:

... to verify that migrating process has sufficient access
permissions to enable participation in all potential future
communications, and never an unauthorized attempt happens
during network evolutions ...

METHQOD:
use judgements of the form:
rk P
meaning that:

[are safe access permissions
for P when it is started up at location k

THEOREM 1 (soundness)

Having safe access permissions is preserved over the operational
semantics rules

THEOREM 2 (safety of communications)

Processes with safe access permissions are not prevented from
participating in communications with other processes

THEOREM 3 (completeness)

Processes without safe access permissions can be placed in a
context which blocks a potential communication.

A travel shop system composed of
* SIX processes

 five locations

home travelshop standard special bank
upcf ate
60
client agent ~ flightinfo saleinfo till
130 100 - 0 10
‘ ~ special bank

A possible final network after 22 units of time is:

home travelshop standard special bank
update
client agent fightinfo saleinfo Fill
| 110 60
i 2 special bank 4

Constraints
Bounded constraint: expr =< x where = € {<,<}
Optimal constraints: max(expr) or min(expr);
Reachability property: T ~ K
Process migration property: P@loc;
Bounded Liveness Property
E.qg., If client is able to arrive at location paying within 10 time units.
Optimized Reasoning

E.g., to find an execution path for process client to arrive at a
certain location paying with the shortest time

PAT iIs a extensible framework for developing domain-specific
model checkers

Distributed Algorithms, Web Services, Bio-systems, Security Protocols, Sensor Networks, etc.

Probabilistic Web Service
Module Module

Concurrent Module Real-time Module

1 Domain-specific Abstraction: data abstraction, zone abstraction, environment abstraction, etc. I }

Intermediate | Abstraction | Modeling

__ L.
Apply Operational Semantics Symboalic Encoding
P——— =NESS e = PRI -
il Explicit Representation: b : | Symbolic Representation: | |
| | [Labeled | [Timed Markov I | | Ly Boolean Formulas i
| | [Transition| |Transition | | Decision |! | | Binary Decision 1
| i S iy nary CNF | I
: | | System System Process |1 | I Diagram I
i rers) sl e iy e e ==l | e — ||
f-;;'? 'A‘.‘u\;'} f:;} Q'-‘.I:’J' b, ;'?
2 Verification || Verification || Verification example Verification i
& Algorithms || Algarithms || Algorithms Generator Algorithms
<
Explicit Model Checking Symbolic Model Checking

Modularized design
Over 2640 registered users, over 600 organizations

TIMO@PAT: automatic verification of TiIMo systems

TiMo System Assertions
LTS

Parser {Simmato') Verifier
7

Name | Definition Meaning

R, T ~» (initerient = 70 A | The balance of client is 70 and the
balance,gent = 170) balance of agent is 170.

R T ~ client@Qbank client 1s able to arrive at bank.

BLy | R W terient <10 Ry is satisfied within 10 ticks for client.

BLy | Ry W tetient <5 Ry 1s satisfied within 3 ticks for client.

OR; | Ri | min(terient) The shortest time of Ry for client.

ORy | Ry | min(teiient) The shortest time of Ro for client.

DF | deadlock free A deadlock state 1 undesired.

Property Result Time (8) # States # Transitions
Ry g 0.026 71 122

Ro \/ 0.024 50 76

Bl \/ 0.024 72 126

BlLo v/ 0.019 50 76

ORq N4 21 125391 493250
ORo v/ 21 125391 493250

DF N4 21 125391 493250

R1, R2: reachabillity properties;

BL1, BL2: bounded liveness properties;
OR1, OR2: optimized properties;

DF: deadlockfree

© In order to allow a quantitative examination of behaviours, we
add probabilities to TiMo, resulting in the new language pTiMo
(probabilistic TiMO).

©® Accordingly, pTiMo models are no longer labelled transitions
systems (LTSs), like in TiMo, but instead they are labelled

discrete-time Markov chains (DTMCs).

Typical properties:

TiMo: "can a given system reach a certain state before t1 time

steps have elapsed at location /17"
versus

pTiMo: "what is the probability that a given system reaches a

certain state before t1 time steps have elapsed at location /17"

In pTiMo we treat the sources of non-determinism in the following way:

1. split complete computational steps into:
© a part containing only potential movements

©® a part containing only potential communications

2. define discrete probability distributions for each part, individually

3. define discrete probability distributions for location selections
4. combine the resulting probability distributions into joint distributions

As a means of investigating the behaviour of pTiMo networks, we
define a new logic, named PLTM (Probabilistic Logic for Timed
Mobility).

PLTM includes features such as:

© properties for short-run and long-run behaviour
© explicit references to locations and processes
©® temporal constraints over local clocks, both finite and infinite

® complex action guards over multisets of
transitions (i.e.,complete computational steps)

Some properties which can be verified in PLTM:

® "with probability greater than 0.5, the process P1 will
communicate at location /1, on channels al or a3, before 3
time steps have elapsed at location /1, and 4 time steps have

elapsed at location /2¢

© "the long-run probability that no movement occurs during a

complete transition is less than 0.3"

By employing atomic propositions, action guards and temporal
constraints, the syntax of PLTM can be defined in terms of the
following path and steady-state properties:

op = true | prop | ~dp | op1AGR: | [0p1UpadpalSy | [0p1Us,0p2)3,

05 = [Sop]>p | [Sop]sp | [Soal>p | [Soalsp

where prop is an atomic proposition, p is a probabillity,
DAis a guard over complete transitions, t is a temporal constraint.

A real-time extension of TiIMo named rTiMo, uses real-time and
explicit timeouts

© it is useful for expressing certain temporal
properties of multi-agent systems with migration and
time constraints.

In rTiMo, the discrete transitions caused by performing actions
with timeouts are alternated with continuous transitions.

Although the syntax of rTiMo is quite close to that of TiMo, its
semantics is different in many aspects:

©® the number of semantic rules (higher in rTiMo),
® number of clocks,

® time nature (continuous or discrete),

® systems evolution.

ki e
(DMoOVE) LAY 20

rf[[grlr:-m.’,F then P|] £ E[[gﬂm—t;!" then P]]

® deadline in rTiIMo Is a positive real number,
while in TiMo it Is a natural number;
® clock in rTiMo Is a single global clock,
while in TiMo there are local clocks (for each location);
® time step In rTiIMo can have any length,
while in TiMo it has length 1 (at each location);
© passage of time in rTiMo Is performed by delay rules,
In contrast with TiMo where Iin each location | there is a
local function @l thatis used to decrement all timers by
1 at location |;

® evolution step in rTiMo is a sequence of individual actions
followed by the passing of time, in contrast with TiIMo where an
evolution step is a sequence of individual actions happening at
the same location |, followed by the passing of time and
elimination of all special symbols (S at location l;

®(8) is a purely technical notation used in the formalisation of the
structural operational semantics of TiMo; intuitively(S)P specifies a
process P which is temporarily stalled, and so cannot execute any
action.

The use of r'TiMo for specifying critical systems is illustrated by
considering a railway bridge controller, a real-time problem
concerned with the control of accessing a mobile bridge by several
trains leaving a depot according to the rule that the bridge can be
accessed only by one train at a time.

We use a small toy example in which the system is defined as:
* a number of three trains,

* two railways

* a bridge that can be up or down

railwayla railwaylb
|uuuuuuung ST

Depot| Sttt .

N

THHHHHHT WIHHHHHEH
railwayZa ralilwayZ2b

The initial system is described in rTiMo by:

railwayla[[trainl | train3]] | railway1b[[0]]
| railway?2al[train2]] | railway2b[[0]]
| bridge[[operate | control1]]

We established a relationship between rTiMo and timed automata

© allowing the use of model checking capabilities provided by
UPPAAL to verify several temporal properties of distributed
networks with migrating and communicating processes
described in rTiMo.

® We use the Event-B modelling method as the target for
translating TIMO specifications

© We utilise the supporting Rodin platform of Event-B to verify
system properties using the embedded theorem-provers and
model checkers.

©® The main feature of our encoding include a generic model
capturing the syntax and semantics of TIMO, together with a
concrete model corresponding to each specific TIMO
specification.

State-transition mode (like ASM, B, Z)
M set theory as mathematical language
B refinement as basic modeling approach

Contexts _

B carrier sets (domains)
W constants

W axioms

Machines .

W global variables

B invariants .

B events that update the variables

Events

B local parameters
B guards

B actions

context C

sets s
constants c
axioms A(s, ¢)

machine M

variables v
invariants [(v)
events

init

e, --- €epn

e = any u where G(u,v) then v := E(u,v) end

Once we have our Event-B model we can use the verification tools of Rodin:

Model checking (ProB) can verify properties such as: .

m “the two customers cannot be at the same shop at the same time”, or
m “once the customer left home, s/he will not go home”

m (counterexamples were found for both of the above)

Theorem proving can reason: o .
m on the generic model - e.g. well-formedness (using invariants), or
m on the concrete model

Parameterised verification . _ _
m using theorem proving, we can verify parameterised versions of
the models (i.e. timers not fixed, but depend on the number of
processes) . .
m this is not feasible with model checking,
m but not easy with theorem proving either .
(less than 40% of the proofs were discharged automatically)

TiMo models distributed systems with time and mobility

© It has a simple syntax, but can model complex systems with
respect to time and mobility.

® Timing constraints for migration and communication.

©® Local clocks and maximal parallelism of actions.

© Security aspects expressed by dynamic access permissions
(access permissions may be lost or gained by processes when
moving).

® An operational semantics and formal results.

® A sound and complete system for safe communication and
migration in open networks.

© pTiMo allows probabilistic behaviour of TiMo networks by solving
the non-determinism involved in movement, communication and
selection of active locations.

© PLTM: a probabillistic temporal logic for pTiMo

© check properties with explicit reference to locations and processes
® impose temporal constraints over local clocks (i.e., finite or
Infinite upper bounds, for each location independently)
© define complex action guards over multisets of actions found in other logics

© A link between rTiMo and timed automata allows model checking
by UPPAAL to verify temporal properties of distributed networks
with migration and communication.

® G. Ciobanu, M. Koutny. Modelling and
Verification of Timed Interaction and Migration. In
Fundamental Approaches to Software

Engineering, Lecture Notes in Computer Science,
vol.4961, 215-229, 2008.

® G. Ciobanu, M. Koutny. Timed Migration and
Interaction with Access Permissions. In 17th
International Symposium on Formal Methods,
Lecture Notes in Computer Science, vol.6664,
293-307, 2011.

©G. Ciobanu, M. Koutny. Timed Mobility in Process
Algebra and Petri nets. Journal of Logic and
Algebraic Programming, vol.80(7), 377-391, 2011.

©B. Aman, G. Ciobanu, M. Koutny. Behavioural
Equivalences over Migrating Processes with
Timers. FMOODS/FORTE 2012, Lecture Notes in
Computer Science, vol.7273, 52—-66, 2012.

® G. Ciobanu, M. Koutny. PerTiMo: A Model of
Spatial Migration with Safe Access Permissions.
Comput. Journal vol. 58(5), 1041-1060, 2015.

© B. Aman, G. Ciobanu, M. Koutny. Behavioural
Equivalences over Migrating Processes with
Timers. FMOODS/FORTE 2012, Lecture Notes in
Computer Science, vol.7273, 52—-66, 2012.

® B. Aman, G. Ciobanu. Real-Time Migration
Properties of rTiMo Verified in Uppaal. SEFM
2013, Lecture Notes in Computer Science,
vol.8137, 31-45, 2013.

©®B. Aman, G. Ciobanu. Timed Mobility and Timed
Communication for Critical Systems. FMICS 2015,

Lecture Notes in Computer Science, vol. 9128,
146-161, 2015.

® G. Ciobanu, C. Juravle. A Software Platform for
Timed Mobility and Timed Interaction. FORTE /
FMOODS, Lecture Notes in Computer Science,
vol.5522, 106-121, 20009.

® G. Ciobanu, C. Juravle. Mobile Agents with
Timers, and Their Implementation. Intelligent
Distributed Computing IV. Studies in
Computational Intelligence, vol.315, Springer,
229-239, 2010.

® G. Ciobanu, C. Juravle. Flexible Software Architecture and Language for
Mobile Agents. Concurrency and Computation: Practice and Experience,
vol.24(6), 559-571, 2012.

® G. Ciobanu, M. Koutny, J. Steggles. A Timed
Mobility Semantics Based on Rewriting Strategies.
SEFM 2012, Lecture Notes in Computer Science,
vol.7504, 141-155, 2012.

® G. Ciobanu, M. Koutny, J. Steggles. Strategy
based semantics for mobility with time and access
permissions. Formal Aspects of Computing vol.
27(3): 525-549, 2015.

® G. Ciobanu, T.S. Hoang, A. Stefanescu. From
TiMo to Event-B: Event-Driven Timed Mobility.
ICECCS 2014 (best paper award).

® G. Ciobanu, T.S. Hoang, A. Stefanescu. From
TiMo to Event-B: Event-Driven Timed Mobility.
ICECCS 2014 (best paper award).

G. Ciobanu, A. Rotaru. A Probabilistic Logic for
PTIMO . In 10th International Colloquium on

G. Ciobanu, M. Zheng. Automatic Analysis of
TIMO Systems in PAT. In 18th International
Conference on Engineering of Complex Computer
Systems, 121-124, IEEE, 2013.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

