COMPLEX ANALYSIS - Solved Problems 1

Nicolae Cotfas, version 08 June 2024 (for future updates see https://unibuc.ro/user/nicolae.cotfas/)

PROBLEMS

Problem 1

Compute:

$$1a$$
 $(2+3i)^2 + (\overline{1-i}) + \frac{2+i}{1+i} + i^{10} + |3-4i|$.

$$1b$$
 $e^{i\frac{\pi}{6}} + e^{3+\pi i} + \cos(3i)$.

$$1c$$
 $(z^3 + \frac{1}{z} - \sin z + z^2 e^{iz})'$.

$$1d \log(1+\sqrt{3}i)$$
.

Problem 2

Expand each of the functions

$$2a$$
 $f: \mathbb{C} \to \mathbb{C}, \quad f(z) = e^{iz}$

$$2b$$
 $g: \mathbb{C} \setminus \{i\} \to \mathbb{C}, \quad g(z) = \frac{1}{z-i}$

in a power series around $z_0 = 0$ (series of powers of z), and around $z_1 = -i$ (series of powers of (z+i)).

Problem 3

Compute the residues of the functions

3a
$$f: \mathbb{C}\setminus\{0,3i,-3i\}\to\mathbb{C}, \quad f(z)=\frac{1}{z^2(z^2+9)}$$

3b
$$g: \mathbb{C} \setminus \{-i\} \to \mathbb{C}, \quad g(z) = (z^2 + 1)e^{\frac{1}{z+i}}$$

in the corresponding singular points.

Problem 4

Compute the integrals

4a
$$I_0 = \int z^2 dz$$
, where $\gamma_0 : [0, 1] \to \mathbb{C}$, $\gamma_0(t) = t + ti$.

$$\begin{array}{|c|c|c|c|c|}\hline 4a & I_0 = \int\limits_{\gamma_0} z^2 dz, \quad \text{where} \quad \gamma_0 \colon [0,1] \to \mathbb{C}, \quad \gamma_0(t) = t + t\mathrm{i}. \\ \hline 4b & I_1 = \int\limits_{\gamma_1} \frac{1}{z^2(z^2+9)} dz, \quad \text{where} \quad \gamma_1 \colon [0,2\pi] \to \mathbb{C}, \quad \gamma_1(t) = \mathrm{i} + 3\mathrm{e}^{\mathrm{i} t}. \\ \hline \end{array}$$

Problem 5

Compute by using the theorem of residues

$$\boxed{5} \qquad I = \int_{0}^{2\pi} \frac{1}{3+\sin t} dt.$$

SOME DEFINITIONS AND THEOREMS

D1 Definition

$$\begin{aligned} & (x_1 + y_1 \mathrm{i})(x_2 + y_2 \mathrm{i}) = (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) \mathrm{i} \\ & \overline{x + y \mathrm{i}} = x - y \mathrm{i}, \\ & |x + y \mathrm{i}| = \sqrt{x^2 + y^2}, \\ & |z_1 - z_2| = \mathrm{distance \ between} \ z_1 \ \mathrm{and} \ z_2, \\ & |z| = \mathrm{distance \ between} \ z \ \mathrm{and} \ 0, \\ & \mathrm{e}^{\mathrm{i} t} \stackrel{\mathrm{def}}{=} \cos t + \mathrm{i} \sin t \qquad & (\mathrm{Euler's \ formula}), \\ & \mathrm{e}^{x + y \mathrm{i}} = \mathrm{e}^x \cos y + \mathrm{i} \ \mathrm{e}^x \sin y, \\ & z = |z| \ \mathrm{e}^{\mathrm{i} \arg z}, \qquad \mathrm{where} \qquad -\pi < \arg z \le \pi, \\ & \cos z = \frac{1}{2} (\mathrm{e}^{\mathrm{i} z} + \mathrm{e}^{-\mathrm{i} z}), \\ & \sin z = \frac{1}{2\mathrm{i}} (\mathrm{e}^{\mathrm{i} z} - \mathrm{e}^{-\mathrm{i} z}), \\ & \log z = \ln |z| + \mathrm{i} \arg z, \qquad \log_k z = \ln |z| + \mathrm{i} (\arg z + 2k\pi). \end{aligned}$$

D2 Definition Let $D \subseteq \mathbb{C}$ be an open set, and $z_0 \in D$.

A function $f:D\longrightarrow \mathbb{C}$ is A function $f: D \to \mathbb{C}$ is complex-differentiable $f'(z_0) \stackrel{\text{def}}{=} \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$. (\mathbb{C} -differentiable) at z_0

D3 | **Definition**

 $f:D\to\mathbb{C}$ defined on an open set D is called \mathbb{C} -differentiable if (or holomorphic function)

f is \mathbb{C} -differentiable at any point $z_0 \in D$.

T1 Theorem

$$(f \pm g)' = f' \pm g' \qquad (z^n)' = nz^{n-1}$$

$$(fg)' = f'g + fg' \qquad (e^z)' = e^z$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2} \qquad (\sin z)' = \cos z$$

$$(f(\varphi(z))' = f'(\varphi(z)) \varphi'(z) \qquad (\cos z)' = -\sin z.$$

T2 Theorem

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots$$
 for $|z| < 1$

$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$
 for any z

D4 Definition

Let $D \subseteq \mathbb{C}$ be an open set,

 $f:D\longrightarrow \mathbb{C}$ be a continuous function, $\gamma:[a,b]\longrightarrow D$ be a path of class C^1

The complex line integral of
$$f$$
 along γ is
$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

T3 Theorem

$$g: D \to \mathbb{C} \text{ is a primitive of } f \\ \text{(that is } g' = f) \end{cases} \Rightarrow \boxed{\int_{\gamma} f(z) \, dz = g(\gamma(b)) - g(\gamma(a))}$$

If $f: D \to \mathbb{C}$ admits a primitive and γ is closed, then $\int f(z) dz = 0$.

D5 Definition Let D be an open set and $f:D\to\mathbb{C}$ holomorphic.

$$z_0 \in \mathbb{C} \setminus D$$
 is an $isolated$ if there exists $r > 0$ such that $\{z \mid 0 < |z - z_0| < r\} \subset D$. $z_0 \in D$ is a $zero$ of t if $\{z \mid 0 < |z - z_0| < r\} \subset D$. t and t if t if t and t if t i

 $z_0 \in \mathbb{C} \backslash D$ is a pole of order k of f if z_0 is a zero of multiplicity k of $\frac{1}{f}$.

T4 | **Theorem** Let D be an open set and $f:D\longrightarrow\mathbb{C}$ holomorphic.

there exists a unique Laurent z_0 is a an isolated $\begin{array}{c|c} z_0 \text{ is a an isolated} \\ \text{singular point and} \\ \{z \mid 0 < |z - z_0| < r \} \subset D \end{array} \right] \Rightarrow \left| \begin{array}{c} f(z) = \sum_{n = -\infty}^{\infty} a_n \ (z - z_0)^n, \\ \text{for } z \text{ satisfying } 0 < |z - z_0| < r \end{array} \right|$

The number $|\operatorname{\mathbf{Res}}_{z_0} f \stackrel{\text{def}}{=} a_{-1}|$ is the **residue** of f in z_0 .

T5 Theorem

and

If z_0 pole of order k, then around z_0 the function f admits an expansion of the form

$$\begin{split} f(z) &= \frac{a_{-k}}{(z-z_0)^k} + \ldots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \ldots \\ \mathbf{Res}_{z_0} f &= \frac{1}{(k-1)!} \lim_{z \to z_0} \left((z-z_0)^k f(z) \right)^{(k-1)} \end{split}$$

D6 | **Definition** (Index of a point z_0 with respect to a path). For a closed path γ not passing through z_0 ,

 $n(z_0, \gamma) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-z_0} dz$ shows how many turns around z_0, γ makes.

D7 Definition. Let D be an open set.

 $\overline{A \text{ closed path } \gamma : [a, b] \to D \text{ is called } homotopic to zero in D \text{ if}}$ γ can be continuously deformed inside D up to a constant path (a path having as image just a point).

T6 Theorem of Residues. For an open set $D \subseteq \mathbb{C}$:

 $\Rightarrow \begin{vmatrix} \int_{\gamma} f(z)dz = \\ = 2\pi \mathrm{i} \sum_{z \in S} n(z, \gamma) \mathbf{Res}_z f \end{vmatrix}$ $f: D \longrightarrow \mathbb{C}$ holomorphic function S set of isolated singular points γ path homotopic to zero in $D \cup S$

SOLUTIONS

Problem 1

By using D1, we get $(2+3i)^2 = 4+12i - 9$ $(\overline{1-i})=1+i,$ $\frac{2+i}{1+i} = \frac{(1-i)(2+i)}{(1-i)(1+i)} = \frac{3-i}{2},$ $i^{10} = i^8 i^2 = (i^4)^2 (-1) = -1,$ $|3-4i| = \sqrt{3^2 + 4^2} = 5,$

$$(2+3i)^2 + (\overline{1-i}) + \frac{2+i}{1+i} + i^{10} + |3-4i| = \frac{3+25i}{2}.$$

1bBy using D1, we get $\begin{array}{l} e^{i\frac{\pi}{6}}\!=\!\cos\frac{\pi}{6}\!+\!i\sin\frac{\pi}{6}\!=\!\frac{\sqrt{3}}{2}\!+\!\frac{i}{2},\\ e^{3+\pi i}\!=\!e^3\,e^{\pi i}\!=\!e^3\left(\cos\pi\!+\!i\sin\pi\right)\!=\!-e^3,\\ \cos(3i)\!=\!\frac{e^{-3}\!+\!e^3}{2}, \end{array}$ whence

$$e^{i\frac{\pi}{6}} + e^{3+\pi i} + \cos(3i) = \frac{\sqrt{3} + e^{-3} - e^3}{2} + \frac{i}{2}.$$

1c By using D1, we obtain

$$\overline{(z^3 + \frac{1}{z} - \sin z + z^2 e^{iz})}' = 3z^2 - \frac{1}{z^2} - \cos z + 2z e^{iz} + iz^2 e^{iz}.$$

1d By using D1, we get

$$\log(1+\sqrt{3}i) = \ln|1+\sqrt{3}i| + i\arg(1+\sqrt{3}i) = \ln 2 + \frac{\pi i}{3}.$$

Problem 2

2a By using T2, around 0, we get

$$f(z) = e^{iz} = 1 + \frac{iz}{1!} + \frac{(iz)^2}{2!} + \frac{(iz)^3}{3!} + \frac{(iz)^4}{4!} + \dots$$
$$= 1 + \frac{iz}{1!} - \frac{z^2}{2!} - \frac{iz^3}{3!} + \frac{z^4}{4!} + \dots \text{ for any } z.$$

By using T2, around -i, we get

$$\begin{split} f(z) &= \mathrm{e}^{\mathrm{i}z} = \mathrm{e}^{\mathrm{i}(z+\mathrm{i}-\mathrm{i})} = \mathrm{e}\,\mathrm{e}^{\mathrm{i}(z+\mathrm{i})} \\ &= \mathrm{e} + \mathrm{e}\,\frac{\mathrm{i}(z+\mathrm{i})}{1!} + \mathrm{e}\,\frac{(\mathrm{i}(z+\mathrm{i}))^2}{2!} + \mathrm{e}\,\frac{(\mathrm{i}(z+\mathrm{i}))^3}{3!} + \mathrm{e}\,\frac{(\mathrm{i}(z+\mathrm{i}))^4}{4!} + \dots \\ &= \mathrm{e} + \mathrm{e}\,\frac{\mathrm{i}(z+\mathrm{i})}{1!} - \mathrm{e}\,\frac{(z+\mathrm{i})^2}{2!} - \mathrm{e}\,\frac{\mathrm{i}(z+\mathrm{i})^3}{3!} + \mathrm{e}\,\frac{(z+\mathrm{i})^4}{4!} + \dots \text{ for any } z. \end{split}$$

2b By using T2, around 0, we get

$$\overline{g(z)} = \frac{1}{z - i} = \frac{1}{-i} \frac{1}{1 - (-iz)} = i \frac{1}{1 - (-iz)}$$

$$= i \left(1 - iz + (-iz)^2 + (-iz)^3 + (-iz)^4 + \dots\right) \quad \text{for } |-iz| < 1$$

$$= i + z - iz^2 - z^3 + iz^4 + \dots \quad \text{for } |z| < 1.$$

By using T2, around -i, we get

$$\begin{split} g(z) &= \frac{1}{z-\mathbf{i}} = \frac{1}{(z+\mathbf{i})-2\mathbf{i}} = \frac{1}{-2\mathbf{i}} \; \frac{1}{1-\frac{z+\mathbf{i}}{2\mathbf{i}}} = \frac{\mathbf{i}}{2} \; \frac{1}{1-\frac{z+\mathbf{i}}{2\mathbf{i}}} \\ &= \frac{\mathbf{i}}{2} \left[1 + \left(\frac{z+\mathbf{i}}{2\mathbf{i}} \right) + \left(\frac{z+\mathbf{i}}{2\mathbf{i}} \right)^2 + \left(\frac{z+\mathbf{i}}{2\mathbf{i}} \right)^3 + \left(\frac{z+\mathbf{i}}{2\mathbf{i}} \right)^4 + \ldots \right] \quad \text{for } \left| \frac{z+\mathbf{i}}{2\mathbf{i}} \right| < 1 \\ &= \frac{\mathbf{i}}{2} + \frac{1}{4} (z+\mathbf{i}) - \frac{\mathbf{i}}{8} (z+\mathbf{i})^2 + \ldots \quad \text{for } |z+\mathbf{i}| < 2. \end{split}$$

Problem 3

We use T5 and D1. The singular points are 0, 3i and -3i. $z_0 = 0$ is a pole of order 2, and consequently

$$\mathbf{Res}_{0} f = \frac{1}{1!} \lim_{z \to 0} \left(z^{2} f(z) \right)' = \lim_{z \to 0} \left(z^{2} \frac{1}{z^{2} (z^{2} + 9)} \right)'$$

$$= \lim_{z \to 0} \left(\frac{1}{z^{2} + 9} \right)' = \lim_{z \to 0} \frac{-2z}{(z^{2} + 9)^{2}} = 0.$$

$$z_{1} = 3i \text{ is a pole of order 1, and consequently}$$

$$\mathbf{Res}_{3i} f = \frac{1}{0!} \lim_{z \to 3i} (z - 3i) f(z)$$

$$= \lim_{z \to 3i} (z - 3i) \frac{1}{z^{2}(z - 3i)(z + 3i)} = \lim_{z \to 3i} \frac{1}{z^{2}(z + 3i)} = \frac{i}{54}.$$

 $z_1 = -3i$ is a pole of order 1, and consequently

$$\begin{aligned} \mathbf{Res}_{-3i} f &= \frac{1}{0!} \lim_{z \to -3i} (z+3i) f(z) \\ &= \lim_{z \to -3i} (z+3i) \frac{1}{z^2 (z-3i)(z+3i)} = \lim_{z \to 3i} \frac{1}{z^2 (z-3i)} = -\frac{i}{54}. \end{aligned}$$

We use T2 and T4. The only singular point is -i. It is not a pole. So, we have to use the Laurent series of g. By looking for a representation of z^2+1 of the form $z^2+1=\alpha(z+i)^2+\beta(z+i)+\gamma$

we get

$$z^2+1=(z+i)^2-2i(z+i).$$

 $\mathbf{Res}_{-\mathrm{i}}g$ is the coefficient of $\frac{1}{z+\mathrm{i}}$ from the Laurent expansion of g around the point -i.

By direct computation, we get

$$\begin{split} g(z) = & (z^2 + 1) \mathrm{e}^{\frac{1}{z + \mathrm{i}}} = \left[(z + \mathrm{i})^2 - 2\mathrm{i}(z + \mathrm{i}) \right] \\ & \left[1 + \frac{1}{1!} \frac{1}{z + \mathrm{i}} + \frac{1}{2!} \frac{1}{(z + \mathrm{i})^2} + \frac{1}{3!} \frac{1}{(z + \mathrm{i})^3} + \frac{1}{4!} \frac{1}{(z + \mathrm{i})^4} + \ldots \right] \\ = & \ldots + \left(\frac{1}{3!} - \frac{2\mathrm{i}}{2!} \right) \frac{1}{z + \mathrm{i}} + \ldots \\ & \text{Consequently, } \mathbf{Res}_{-\mathrm{i}} g = \frac{1}{6} - \mathrm{i}. \end{split}$$

Problem 4

The function $h: \mathbb{C} \to \mathbb{C}$, $h(z) = \frac{z^3}{3}$ is a primitive of z^2 . Therefore, by using T3, we get

$$I_0 = \int_{\gamma_0} z^2 dz = h(\gamma(1)) - h(\gamma(0)) = \frac{(1+i)^3}{3} = i - 1.$$

We use the theorem of residues T6. 4bThe singular points are 0, 3i and -3i, but only 0, 3i are inside the circular path γ of center i and radius 3. Therefore, by using the solution of 3a, we obtain

$$I_1 = \int_{\gamma_1}^{\gamma_1} \frac{1}{z^2(z^2+9)} dz = 2\pi i \left(\mathbf{Res}_0 f + \mathbf{Res}_{3i} f \right) = -\frac{\pi}{27}.$$

Problem 5

By using the definition D1, the expression

$$I = \int_{0}^{2\pi} \frac{1}{3 + \sin t} dt$$

can be written as

$$I = \int_{0}^{2\pi} \frac{1}{3 + \frac{1}{2i}(e^{it} - e^{-it})} dt$$

$$I = \int_{0}^{2\pi} \frac{2i}{6i + e^{it} - e^{-it}} dt$$

or

$$I = \int\limits_0^{2\pi} \frac{1}{\mathrm{e}^{\mathrm{i}t}} \frac{2}{\mathrm{6i} + \mathrm{e}^{\mathrm{i}t} - \mathrm{e}^{-\mathrm{i}t}} \; (\mathrm{e}^{\mathrm{i}t})' dt.$$
 This formula, written as

$$I = \int_{0}^{2\pi} \frac{2}{e^{2it} + 6ie^{it} - 1} (e^{it})' dt$$

is the complex integral
$$\int_{\gamma}^{\infty} \frac{2}{z^2 + 6iz - 1} dz$$

along the circular path $\gamma:[0,2\pi]\to\mathbb{C}, \ \gamma(t)=e^{\mathrm{i}t}$. It can be computed by using the theorem T6. Since

$$z^{2} + 6iz - 1 = (z+3i)^{2} + 9 - 1 = (z+3i)^{2} + 8$$
$$= (z+3i)^{2} - (i2\sqrt{2})^{2} = (z-z_{1})(z-z_{2}),$$

where $z_1 = (2\sqrt{2} - 3)i$ and $z_2 = (-2\sqrt{2} - 3)i$,

the singular points are z_1 and z_2 ,

but only z_1 is inside the domain with the frontier γ .

The point
$$z_1$$
 is a pole of order 1, and
$$\mathbf{Res}_{z_1} \frac{2}{z^2 + 6iz - 1} = \lim_{z \to z_1} (z - z_1) \frac{2}{(z - z_1)(z - z_2)}$$
$$= \lim_{z \to z_1} \frac{2}{z - z_2} = \frac{2}{z_1 - z_2} = \frac{2}{4\sqrt{2}i} = \frac{-i}{2\sqrt{2}}.$$

Therefore,

$$I = 2\pi i \operatorname{Res}_{z_1} \frac{2}{z^2 + 6iz - 1} = 2\pi i \frac{-i}{2\sqrt{2}} = \frac{\pi}{\sqrt{2}}.$$