DIFFERENTIAL EQUATIONS - Solved Exercises 2

Nicolae Cotfas, version 29 April 2025 (for future updates see https://unibuc.ro/user/nicolae.cotfas/)

EXERCISES

Exercise 1

Find the general solution of the equations:

$$\boxed{1a} \quad y'' - 2y' - 3y = 0.$$

$$\boxed{1b} \quad y'' - 2y' + y = 0.$$

$$1c \quad y'' - 2y' + 2y = 0.$$

$$1d \quad y''' + y'' + y' + y = 0.$$

Exercise 2

Solve the equations

$$\boxed{2a} \quad y' - 2xy = 0.$$

$$\boxed{2b} \quad y' - 2xy = x.$$

$$2c$$
 $y'' - (\frac{1}{x} + 2x)y' = 0.$

Exercise 3

Solve by two methods

$$\boxed{3} \quad (x+y)dx + (x-y)dy = 0.$$

Exercise 4

Solve by two methods

$$\begin{bmatrix}
4
\end{bmatrix} \begin{cases}
y_1' = 2y_2 \\
y_2' = 2y_3 \\
y_3' = -2y_1
\end{cases}$$

Exercise 5

Find the equation of the form

5
$$y'' + \alpha(x)y' + \beta(x)y = 0$$

admitting the solutions $y_1(x) = x$ and $y_2(x) = x^2$.

Exercise 6

Solve the equation xy' - 2y = 0

$$6b$$
 - by considering it as an Euler equation;

$$|6c|$$
 - by using the method of integrating factor;

SOME DEFINITIONS, THEOREMS and REMARKS

Theorem (Linear equations with constant coefficients).

The space of all the real solutions of

 $a_0y^{(n)} + a_1y^{(n-1)} + \dots + a_{n-1}y' + a_ny = 0$ where $a_0,...,a_n \in \mathbb{R}$, is a real vector space of dimension n.

D1 **Definition**. The polynomial

$$P(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n$$

is called the *characteristic polynomial* of the equation (1).

T2 | Theorem (Particular solutions).

$$y(x) = e^{\lambda x}$$
 is a solution of (1) $\Leftrightarrow P(\lambda) = 0$

$D2 \mid \mathbf{Definition} \mid Complex \ exponential).$

$$e^{(\alpha+\beta i)x} = e^{\alpha x} \cos \beta x + i e^{\alpha x} \sin \beta x$$

T3 **Theorem**. General solution of $a_0y'' + a_1y' + a_2y = 0$.

 $P(\lambda) = a_0 \lambda^2 + a_1 \lambda + a_2$ has the roots $\lambda_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_0 a_2}}{2a_2}$. General solution:

• $\lambda_1 \neq \lambda_2 \in \mathbb{R}$ $\Rightarrow y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$

$$\bullet \lambda_1 = \lambda_2 = \lambda \quad \Rightarrow \quad y(x) = C_1 e^{\lambda x} + C_2 x e^{\lambda x}$$

•
$$\lambda_1 = \lambda_2 = \lambda$$
 $\Rightarrow y(x) = C_1 e^{\lambda x} + C_2 x e^{\lambda x}$.
• $\lambda_{1,2} = \alpha \pm \beta i$ $\Rightarrow y(x) = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$.

$$T4$$
 Theorem (Euler's equation).

$$\boxed{a_0x^ny^{(n)} + ... + a_{n-1}xy' + a_ny = 0} \xrightarrow{\text{change} \atop x = e^{t'}} \text{constant coefficients}$$

T5 | **Theorem** (*Primitives* of a continuous function)

$$\begin{array}{ccc}
f:(a,b) \to \mathbb{R} \\
\text{continuous}
\end{array} \Rightarrow & \begin{array}{c}
\text{Primitives of } f \text{ are:} \\
F:(a,b) \to \mathbb{R}, \\
\hline
F(x) = \int\limits_{x_0}^x f(t) \, dt + C \\
\hline
x_0 \in (a,b) \text{ is fixed}
\end{array} \quad \begin{array}{c}
\text{We have} \\
F'(x) = f(x), \\
\text{that is}
\end{array}$$

$T6 \mid$ **Theorem** (Separable equations).

The solution
$$y(x)$$
 of
$$y' = f(x) g(y)$$
 is defined by
$$\int_{y_0}^{y} \frac{1}{g(u)} du = \int_{x_0}^{x} f(t) dt + C$$

T7 Linear equation.

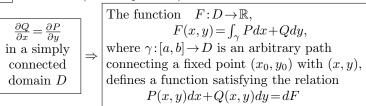
$$y' = f(x)y$$
 has the general solution $y(x) = C e^{\int_{x_0}^x f(t)dt}$

T8 | Method of the variation of parameter.

$$y' = f(x)y + g(x)$$
 admits a particular solution of the form $y_p(x) = C(x) e^{\int_{x_0}^x f(t)dt}$.

T9 | Linear non-homogeneous equation.

$T10 \mid$ **Theorem** (Exact equations).



R3 Remark.

In D, the equation P(x,y)dx+Q(x,y)dy=0 can be written as dF=0, and its solution is described implicitly by F(x,y)=C.

Remark. By denoting
$$Y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}$$
, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$,
$$\begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 \\ y_2' = a_{21}y_1 + a_{22}y_2 \end{cases}$$
 can be written as $Y' = AY$

T11 Theorem.

The space of all the real solutions of Y' = AY, where $a_{ij} \in \mathbb{R}$, is a real vector space of dimension 2.

$D4 \mid \mathbf{Definition}$. The polynomial

$$P(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21}$$

is called the *characteristic polynomial* of Y' = AY.

Theorem (Particular non-null solutions)
$$Y(x) = \begin{pmatrix} p \\ q \end{pmatrix} e^{\lambda x} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ satisfies } Y' = AY \iff \begin{cases} P(\lambda) = 0 & \text{and} \\ A \begin{pmatrix} p \\ q \end{pmatrix} = \lambda \begin{pmatrix} p \\ q \end{pmatrix}$$

T13 | **Theorem.** If λ_1 and λ_2 are the solutions of $P(\lambda) = 0$, then:

$$\begin{array}{l}
\bullet \quad \lambda_1, \ \lambda_2 \in \mathbb{R} \\
A \begin{pmatrix} p_j \\ q_j \end{pmatrix} = \lambda_j \begin{pmatrix} p_j \\ q_j \end{pmatrix} \\
\text{linearly independent}
\end{array} \Rightarrow Y(x) = C_1 \begin{pmatrix} p_1 \\ q_1 \end{pmatrix} e^{\lambda_1 x} + C_2 \begin{pmatrix} p_2 \\ q_2 \end{pmatrix} e^{\lambda_2 x}.$$

$$\begin{array}{ll}
\bullet & \lambda_{1,2} = \alpha \pm \beta i \notin \mathbb{R} \\
A \begin{pmatrix} p \\ q \end{pmatrix} = (\alpha + \beta i) \begin{pmatrix} p \\ q \end{pmatrix} \Rightarrow & Y(x) = C_1 \Re \left\{ \begin{pmatrix} p \\ q \end{pmatrix} e^{(\alpha + \beta i)x} \right\} \\
& + C_2 \Im \left\{ \begin{pmatrix} p \\ q \end{pmatrix} e^{(\alpha + \beta i)x} \right\}.
\end{array}$$

SOLUTIONS

Exercise 1. We use T2 and T3.

$$\begin{array}{|c|c|c|} \hline 1a & \lambda^2 - 2\lambda - 3 = 0 \Rightarrow \lambda_1 = -1, \ \lambda_2 = 3. \\ \hline T3 & \Rightarrow y(x) = C_1 \, \mathrm{e}^{-x} + C_2 \, \mathrm{e}^{3x}. \\ \hline \end{array}$$

$$\begin{array}{c|ccc}
\hline
1b & \lambda^2 - 2\lambda + 1 = 0 \Rightarrow \lambda_1 = \lambda_2 = 1. \\
& T3 & \Rightarrow y(x) = C_1 e^x + C_2 x e^x.
\end{array}$$

$$\begin{array}{|c|c|} \hline 1c & \lambda^2 - 2\lambda + 2 = 0 \Rightarrow \lambda_{1,2} = 1 \pm i. \\ & T3 \Rightarrow y(x) = C_1 e^x \cos x + C_2 e^x \sin x. \end{array}$$

$$\begin{array}{|c|c|c|c|}\hline 1d & (\lambda^2+1)(\lambda+1)=0 & \Rightarrow & \lambda_1=-1, & \lambda_{2,3}=\pm \mathrm{i}. \\ & T3 & \Rightarrow & y(x)=C_1\,\mathrm{e}^{-x}+C_2\,\cos x+C_3\,\sin x. \end{array}$$

Exercise 2 We use T7.

The equation can be written successively as follows:
$$y' = 2xy, \qquad \frac{y'}{y} = 2x, \qquad (\ln y)' = 2x, \qquad \ln y = x^2 + \ln C, \\ \ln \left(\frac{y}{C}\right) = x^2, \qquad \frac{y}{C} = e^{x^2}, \qquad y(x) = C e^{x^2}.$$

We use T8 and T9. Looking for a particular solution of the form
$$y_p(x) = C(x) e^{x^2}$$
 we get successively: $C' e^{x^2} + 2x C e^{x^2} - 2x C e^{x^2} = x$, $C' = x e^{-x^2}$, $C(x) = \int x e^{-x^2} dx = -\frac{1}{2} e^{-x^2}$, and consequently $y_p(x) = -\frac{1}{2}$. T9 \Rightarrow the general solution of $y' - 2xy = x$ is $y(x) = C e^{x^2} - \frac{1}{2}$.

The equation satisfied by
$$z=y'$$
 is $z'-(\frac{1}{x}+2x)z=0$, and it can be written successively:
$$\frac{z'}{z}=\frac{1}{x}+2x, \quad \ln z=\ln x+x^2+\ln C_1, \quad z(x)=C_1\,x\,\mathrm{e}^{x^2}.$$
 Consequently, $y'(x)=C_1\,x\,\mathrm{e}^{x^2}$ and $y(x)=\frac{1}{2}C_1\,\mathrm{e}^{x^2}+C_2$.

Exercise 3

3a Method 1. The equation is exact in
$$D = \mathbb{R}^2$$
,
$$\frac{\partial (x+y)}{\partial y} = 1 = \frac{\partial (x-y)}{\partial x}.$$
By using T10 and the path

 $\gamma\!:\![0,1]\!\to\mathbb{R}^2,\quad \gamma(t)\!=\!(xt,yt)$ connecting (0,0) with (x,y), we get

$$\begin{split} F(x,y) &= \int\limits_{1}^{\gamma} (x+y) dx + (x-y) dy \\ &= \int\limits_{0}^{\gamma} \left[(xt+yt)x + (xt-yt)y \right] dt \\ &= \left((x^2 + 2xy - y^2) \frac{t^2}{2} \right) \Big|_{t=0}^{t=1} \\ &= \frac{1}{2} (x^2 + 2xy - y^2). \end{split}$$

The equation can be written as (see R3) $d(x^2+2xy-y^2)=0$,

and its solution is described by $x^2 + 2xy - y^2 = C.$

$3b \mid Method \ 2$. The equation can be written as $y' = \frac{y+x}{y-x}$ or $y' = \frac{\frac{y}{x}+1}{\frac{y}{x}-1}$.

It is a homogeneous equation. By using the change of function $z(x) = \frac{y(x)}{x}$, that is y(x) = x z(x), we get $z + x z' = \frac{z+1}{z-1}$, $\int \frac{1}{x} dx = \int \frac{z-1}{1+2z-z^2} dz + \ln C_1$ $\ln x = -\frac{1}{2} \ln(1+2z-z^2) + \ln C_1$, whence $\frac{x}{C_1} = \frac{1}{\sqrt{1+2z-z^2}}$, $\sqrt{1+2z-z^2} = \frac{C_1}{x}$, $1+2\frac{y}{x}-\frac{y^2}{x^2} = \frac{C_1^2}{x^2}$, that is $x^2+2xy-y^2=C$.

Exercise 4

|4a| Method 1. We have

$$\begin{cases} y_1' = 2y_2 \\ y_2' = 2y_3 \Rightarrow \begin{cases} y_1'' = 2y_2' \\ y_2' = 2y_3 \Rightarrow \end{cases} \begin{cases} y_1'' = 4y_3 \\ y_3' = -2y_1 \end{cases} \Rightarrow \begin{cases} y_1''' = 4y_3' \\ y_3' = -2y_1 \Rightarrow \end{cases} \begin{cases} y_1''' = 4y_3' \\ y_3' = -2y_1 \Rightarrow \end{cases} \\ \text{whence} \quad y_1''' + 8y_1 = 0. \\ \lambda^3 + 8 = 0 \Rightarrow \lambda_1 = -2, \quad \lambda_{2,3} = 1 \pm \mathrm{i}\sqrt{3}. \end{cases}$$

Consequently
$$y_1(x) = C_1 e^{-2x} + C_2 e^x \cos \sqrt{3}x + C_3 e^x \sin \sqrt{3}x$$
, $y_2(x) = \frac{1}{2}y_1' = \dots$ $y_3(x) = \frac{1}{2}y_2' = \dots$

|4b| Method 2. The system can be written as Y' = AY, where.

$$Y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \\ y_3(x) \end{pmatrix}, A = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ -2 & 0 & 0 \end{pmatrix}, \begin{vmatrix} -\lambda & 2 & 0 \\ 0 & -\lambda & 2 \\ -2 & 0 & -\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^3 + 8 = 0 \Rightarrow \lambda_1 = -2, \quad \lambda_{2,3} = 1 \pm i\sqrt{3} \text{ and}$$

$$A \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = -2 \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \text{ satisfied by } \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix},$$

$$A \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = (1 + i\sqrt{3}) \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \text{ satisfied by } \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 2 \\ 1 + i\sqrt{3} \\ -1 + i\sqrt{3} \end{pmatrix}.$$

$$Y(x) = C_1 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} e^{-2x} + C_2 \mathfrak{Re} \left\{ \begin{pmatrix} 2 \\ 1 + \mathrm{i}\sqrt{3} \\ -1 + \mathrm{i}\sqrt{3} \end{pmatrix} e^{(1 + \mathrm{i}\sqrt{3})x} \right\} + C_3 \mathfrak{Im} \{ \dots \} \; .$$

Exercise 5.

The functions $\alpha(x)$ and $\beta(x)$ must satisfy $\begin{cases} \alpha(x) + x \, \beta(x) = 0 \\ 2 + 2x \, \alpha(x) + x^2 \, \beta(x) = 0 \end{cases} \sim \begin{cases} \alpha(x) = -x \, \beta(x) \\ 2 - x^2 \, \beta(x) = 0 \end{cases} \sim \begin{cases} \alpha(x) = -\frac{2}{x} \\ \beta(x) = \frac{2}{x^2}. \end{cases}$

Exercise 6.

6a We get xy'-2y=0, $\frac{y'}{y}=\frac{2}{x}$, $(\ln y)'=\frac{2}{x}$,

 $\ln y = 2 \ln x + \ln C$, $\ln \frac{y}{C} = \ln x^2$, $\frac{y}{C} = x^2$, $y(x) = C x^2$.

6b We use the change of variable/function $y(x) \mapsto z(t)$, $x = e^t$ $t = \ln x$ $y(e^t) = z(t),$ $y(x) = z(\ln x)$. Since

$$\frac{\mathrm{d}}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}}{\mathrm{d}t} = \mathrm{e}^{-t} \frac{\mathrm{d}}{\mathrm{d}t},$$
 the equation satisfied by z is

$$z'-2z=0$$

and we get $\frac{z'}{z}\!=\!2,~(\ln z)'\!=\!2,~\ln z\!=\!2t\!+\!\ln C,~z(t)\!=\!C\,\mathrm{e}^{2t}.$ Consequently, we obtain

$$y(x) = Ce^{2\ln x}, \quad y(x) = Ce^{\ln x^2}, \quad y(x) = Cx^2.$$

Written as $\frac{2}{x} dx - \frac{1}{y} dy = 0$, the equation is exact

$$\frac{\partial}{\partial y}^{g} \left(\frac{2}{x}\right) = 0 = \frac{\partial}{\partial x} \left(-\frac{1}{y}\right).$$

By integrating along a path connecting (1,1) with (x,y)parallel to the axes of coordinates, we get

$$F(x,y) = \int_{1}^{x} \frac{2}{t} dt + \int_{1}^{y} \frac{-1}{t} dt = 2 \ln t |_{1}^{x} - \ln t |_{1}^{y} = \ln x^{2} - \ln y.$$

The solutions are described by the relation

$$\ln x^2 - \ln y = \ln C_1$$

equivalent to $y(x) = \frac{x^2}{C_1}$ and $y(x) = C x^2$.

6d A power series

 $y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$ convergent in a certain interval (a, b), satisfies the equation xy'=2y if and only if

$$a_1 x + 2 a_2 x^2 + 3 a_3 x^3 + \dots + n a_n x^n + \dots = = 2 a_0 + 2 a_1 x + 2 a_2 x^2 + 2 a_3 x^3 + \dots + 2 a_n x^n + \dots$$

that is, for

Consequently, y satisfies xy' = 2y if and only if $y(x) = a_2 x^2$.