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Abstract. There exist many attempts to define a Wigner function for qudits, each
of them coming with its advantages and limitations. The existing finite versions have
simple definitions, but they are artificial in their construction and do not allow an
intuitive state analysis. The continuous versions have more complicated definitions,
but they are similar to the original Wigner function and allow a visualization of the
quantum states. The version based on the concept of tight frame we present is finite,
but it has certain properties and applications similar to those of continuous versions.
Based on the frame representation, we present several graphical representations of
qubit states, and define two new parameters concerning them. We show that, from a
mathematical point of view, the qubit is the orthogonal projection of qutrit.

1. Introduction

In the case of a qudit described by a complex d-dimensional Hilbert space H, the
complex Hilbert space L£(H) of all the linear operators A : H — H with the inner
product (A, B)) =Tr(AB) and the real Hilbert space A(H) of all the self-adjoint (also
called Hermitian) operators A:H — H with the inner product (A, B)) =Tr(AB) play
a fundamental role. Their elements can be described by using certain orthogonal bases
[1, 21 3, [4], but it is known that a frame representation allows a description of the quasi-
probability representations of finite quantum systems in a unified formalism [3] [6], and
has several other remarkable properties [6), [7].

In the case when H is odd-dimensional, a discrete version of the Wigner function
of a self-adjoint operator A : H — H is usually defined as (j, k) — Tr(ATI(j, k)),
where {II(j,k)} is the orthogonal basis of A(H) formed by a discrete version of the
displaced parity operators. We show that a tight frame {W};,} of A(?) can be obtained
in a simple way by starting from any finite tight frame {|v;)} of #, and try to prove
that, in certain cases, the function (j, k) — Tr(AWj;) containing all the information
concerning A is a useful representation. The frame representations defined in this way
may help us to extract some useful information concerning the quantum states of qudits,
a deeper analysis of nonclassicality, coherence and entanglement of quantum states.
Several examples and some possible applications are presented.
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1.1. Finite tight frames

Let I be a finite-dimensional Hilbert space over the field F, where F=R or F=C. In
the next sections, K=H or L=L(H) or C=A(H). A set {ug, uy,...,un} is a spanning
set for IC if any element of I can be represented as a linear combination of wug, u1,..., U,
with coefficients from F. A sequence of vectors ug, w1, ..., U, is a frame for K if there
exist two constants «, 5 € (0, 00) such that

all2]P <Y uglz)[* < Bl (1)
k=0

for any z € KC. It is known [8], 9] that in a finite-dimensional Hilbert space, any spanning
set is a frame.

A frame ug, U, ..., Uy, is called a tight frame if in (Il) we can choose o = 3, that is if
S o [{uklz)|*= af|z||?, for any @ € K. Without loss of generality, we can assume that

a=1, prove that Ixx=">_ |ux)(ux|, and consequently
k=0

@) = Iic|) = i ) gl

A=Al = 3 |uy)(uj|Alug) (ugl,

J,k=0

(2)

for any linear operator A : K — K and any x € K.

A tight frame can be obtained from any frame [8, 9]. If ug, uq, ..., up, is a frame,
then the frame operator
SIK=K, 5= fug)(ug, (3)
is self-adjoint, positive-definite, ir]::eortible and
Ix=S"125571/2 :i SV ) (ug| STV, (4)
k=0
that is, uy = S™"%uy, ..., u, = S™%u,, is a tight frame. So, a large variety of tight

frames of ‘H, L£L(H) and A(H) can be obtained by starting from spanning sets of these
spaces.

Any orthonormal basis is a tight frame. A tight frame which is not an orthogonal
basis contains more vectors than the dimension of the space, and the representation
of a vector as a linear combination of the elements of the tight frame is not unique.
Nevertheless, the indicated standard representation is a privileged one in the sense

=gt | o a2 > 3 ()| )
k=0 = agl? > ug|z) 2 5
|x) :kz::() |ug) o k=0 ' k=0 '

For example, in the case H =C?2, the vectors

woy={ V|, \u1>=(_§>, \u2>=<:§), (6)
0 V2 V2
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satisfying the relation |ug)+|ui)+|uz) =0, form a tight frame, and for any |z) € C* and
any A€ C, we have

)= i ) | 7) = i ) (gl + ),
z (gl + A2 = z [Cugla) A2 z gl .

The orthogonal projection of an orthonormal basis of a Hilbert space onto a

(7)

subspace is a tight frame in subspace. Any tight frame {ug, u1, ..., u,,} of H allows us
to embed H into the Hilbert space F™*! such that {ug,uy,...,u,} is the orthogonal
projection of the canonical basis {eg,€1,...,6,} of F™ T If {ep,e1,...,e4-1} is an
orthonormal basis of H, then {wy, w1, ..., wg_1}, where

(uolex)

w=| . )

(umlex)

is an orthonormal system,

(wj|w) :Z (uilej) (uilex) =Z<€j|ui> (uilex) = (ejlex) =djx-

The Hilbert space H can be identified with the subspace & =span{wg,wy, ..., wq_1} of
F™*! by using the linear isometry

d—1 d—1
Zajlej) = Z%’Wj)- 9)
=0 =0

d-1
The orthogonal projector corresponding to S is P:F™" =8, P=>3" |w;)(w;|, and
j=0
d—1 -1 -
Pley)= Z |w;)(wslex) = ZO [w;)(erlw;) = Z |wj) (ur|w;)
Jj=0 J Jj=0
d-1 -
= 2 fwj)wjlu) = E ;) (ejlu) = ur)-
J: :

1.2. A finite version of the Wigner function

The finite versions of Wigner function [I} [6, 10, 111, 12} 13|, 14l 15, 16] play an important
role in description of qudits. For simplicity, in this section, we consider only quantum
systems with an odd-dimensional (d=2s+1) Hilbert space H, which can be regarded
as the space of all the functions ¢ :{—s,—s+1,...,s—1, s} — C with the inner product
(ply=>"5__, ©(7) ¥ (7). Each function ¢ € H can be extended up to a periodic function
1 :Z— C of period d.

The displacement operators D(j,k):H—H,

D(j, kyp(n) = e~ /O CET/OE (1 —j), (10)
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form [, 14} [15, [16] an orthogonal basis in L£(H),
«D(]a k)a D(?’L, m)>> :d(sjn 5kma

Legp=% 3 DG, RNDG, K,

j7k:_s

and the displaced parity operators 11(j,k): H—H,
11(j, k) = D(j, k) L D'(5, k),

(11)

(12)

where I1: H —H, Iip(n)=1(—n), form [, 14 15, T6] an orthogonal basis in A(H),

(IL(5, k), 1L(n, m))) =d G km,

L =1 3 (TG, k)Y (G, k).

jk=—s

Any operator A€ A(H) admits the representations

A= "X, k) D k)= "> Walj, k) I1(j, k),

jk=—s jik=—s
where
X4 {=s,—s+1,..., s} x{=s,—s+1,....,s} —C,
X4 (7, k)= 3(D (4, k)| A) = g Tr(A D'(j, k))
is the Weyl characteristic function [1, 12, [13] of A, and

Wa:i{=s,—s+1,....,s} x{=s,—s+1,...,s} — R,
Wa(j, k) = (11(j, k)|A) = g Tr(ATL(5, k),

is the Wigner function [1,16] of A. If A, B€ A(H), then
(AIB) =3 3= (AID(, k) (D (5, k)| B),

(AL, ) (11 )| B))

Tr(AB)

_

2.

Tr(AB)=(A|B) =3

)
Js

o~ »

el

that is

Te(AB)=d Y X, (5, k) x, (. k)=d >_ Wa(j. k) Ws(j. k).

j,kZ—S j:k:_s

For any k€ (0, 00), the function

gei{—s,—s+1,.,5—1, s} =R, go(n)= Y e (er/dlnmay

m=—0oQ

represents a discrete version of the Gaussian function R 5 R : ¢ — e~ (v7/M)*,

the Fourier transform

FHoHew o FUL Fl)=—z 30 e S0 0),

n=-—s

(13)

(18)
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the discrete Gaussian function transforms as

1
F Kl = T — K+ 21
0= oy 1)
Particularly, the normalized function
1
10,0) = lg1) (22)
Iral

is an eigenfunction of F corresponding to the eigenvalue 1, and can be regarded as a
discrete version of the vacuum state.
The discrete coherent states

14: k) =D(j, k)]0, 0) (23)
form a tight frame in H,
L& s
J,k=—s

1.3. A discrete phase-space representation of qutrit

In the case of the qutrit, C3 = {1:{—1,0,1} —C}, and the displacement operators are

0 &% 0 0 1 0 0 e % 0
D(_la_l): 0 0 ei% ) D(—LO): 0 0 1 ) D(_lal): 0 0 e% )
-1 0 0 1 00 -1 0 0
e 0 0 1 00 e~ 0 0
po,-nH= 0 1 o |, DOO=(0 1 0|, DOH=[ 0 1 0 |, (25
0 0 e % 0 0 1 0 0 &%
0 0 -1 00 1 0 0 -1
D(l,-1)=fes 0 0 |, D@LO=|1 0 0], DQAl)=[es 0 0
0 e 35 0 010 0 e 0
The Wigner function of a linear operator A€ A(C?) is
. 1 . 1 )
where the displaced parity operators I1(j, k) are
1 0 0 10 1 0 0
m-1,-H=[o0 0 —e% |, O-=1,0=[0 0 1], I-1,1)=[0 0 —eF |,
0 —e% 0 0 1 0 —e 3 0
0 0 e % 0 1 0 0 &%
no,-H=f o 1 0o |, T0,0= 1 , no,n=| 0 1 0 |, (27
e 0 0 1 0 e~ 0 0
0 —e 35 0 1 0 0 —e% 0
(1, -1)=| —e% 0 ol, W10=[1 0, IO,)=|-e35 0 0
0 0 1 0 1 0 0 1
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The discrete Fourier transform

1 eF 1 F
F:.C*—C3, F=—7| 1 1 1 (28)

V3 2mi _2mi

e3 1 e 3

has the distinct eigenvalues 1, —i, —1, and the spectral decomposition

-F:mo)(%o‘_ 1‘31><31‘_|32><32\7 (29)

where
- % L Wit
|So)= %\/@ S = (1) , [82)= —%H : (30)
Wi % Wires
The discrete vacuum state is |0,0) = |Fo), and the nine discrete coherent states
7, k) =D(j, k)|0,0) form a tight frame in C*, namely 3 kZl: 1\]’, kY(j, k| =Tcs.
i
1.4. A discrete phase-space representation of qubit
In the case of the qubit, the operators
Koozé(ﬂ+am+ay+az), Km:%(ﬂ—agﬁ—ay—l—az), (31)
Kio=3I+0,—0,—0.), Kiu=3(I—-0,40,—0.)

proposed independently by Wootters [10] and Feynman [11], form an orthogonal basis
in A(C?). For A€ A(C?), the function

War 01 {01 =R, Walj. k)= (Kl =5 Tr(A K), - (32)

represents the Wigner function of A.

1.5. A continuous phase-space representation of qubit

In the case of a two-level quantum system (qubit), the surface of a sphere is used
as a phase space, and the continuous Wigner function of a state o is defined as
[6], 17, (18], 19], 20]

Wy(8,¢)=Tr(o A6, 9)), (33)
where 6 €0, 7], p€[0,27) are the Euler angles,

A0, ¢)=R(0,¢,2)ILRI(0, ¢, ), (34)
II = I+ v30.), and R(#,¢,®) is the rotation operator R(f,¢,®) =

e—i¢02/2e—i€o‘y/2e—iq>oz/2 ]
In the case of a composite system of N qubits, the phase space is a product of N
spheres, and the Wigner function of a state o is defined as

N
Wo(b1, ..., 0n, b1, ..., o) =T <Q ®A(9i>¢i)> - (35)
=1
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For visualization of a state of the composite system, it is often sufficient to consider the
equal-angle slice [17]

WEAG,0)=W,(0,...,0, 6, ..., §). (36)

2. Frame representations of qudit quantum states and observables

2.1. Wigner function of a single qudit

In order to obtain a frame representation for a qudit with the complex Hilbert space H of
dimension d, we start from a tight frame vy, v, ..., v, for H satisfying I, =" [v;) (v].
For any Ae L(#), we have

T s

A=Ty A=Y [03) w3 Alve) (v = Y (w5 Alvg) |v;) (g (37)

5,k=0 5,k=0
Particularly, this means that the operators
Vi =1v;) (vl where j, k€{0,1,...,7} (38)
span L£(H), and consequently form a frame.

Theorem 1. The frame {V;;} is a tight frame for the complex Hilbert space L(H), that
18

Leoo= D 1Vie) (Vi (39)

Proof. If {|e;)} is an orthonormal basis of H, then {|Ej)) =|e;)(ex|} is an orthonormal
basis of L(H). Since

HH:Z|UJ'><UJ'| = Z<6nlvj><vjlem>=5nm, (40)

(Ju)(v))T = |v){u], and Tr(lem)(en]A) = (en|Ale,n), the frame operator S =
Z;,kzo Vi) (V| satisfies
(Enl S| B} = 5 g (B Vi) (Vi i)
=375 ko Trlew){eal fu) l) Tr(low) (s Jei) (el )
=2 k—olenlvi) (Vklem) (vjleq)(edvr)
:Z;:0<e"|vj><vj|ei> > eeoleelvr) (Vilem) = 0niOpme. ®
Any operator A€ L(H) admits the representation

r X,:{0,1,..,r}x{0,1,....r} —=C,
A= Z Xa (]7 k) Vik, where ! { } { }T
J,k=0 Xas k)= (Vir A)) =Tr(A V).

It can be regarded as a version of the discrete Weyl characteristic function of A. The
displacement operators D(j, k) are unitary operators satisfying the relation

D(j, k)D(n, m)=e™/DEn=im) D (i L n k+m). (42)
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The operators Vj, satisfy Vka:ij and the relations

Vik Vi = (k| Vim, (43)
instead of (42)), but they are not unitary operators.

Theorem 2. In the real Hilbert space A(H), the self-adjoint operators

W;;=Vjj, for  0<j<r
Wik=7(Vik+ Vi), for  0<j<k<r (44)

Win=5Vij=Vir),  for 0<k<j<r

form a tight frame, that is Lay =25 o W) (Wil
Proof. In L(H), S=3"7,_o|Wjk) (W] satisfies

S=> [Wih (Wil = Zng Vikl = (45)

J,k=0 7,k=0
but the restriction S|4y of S to A(H) is Laz). ™

Any operator A€ A(H) admits the representation
W, {0,1,...,r}x{0,1,...,r} =R,

. ZW PO RS o= (WA =T,
It can be regarded as a version of the discrete Wigner function of A. Explicitely,
(vj] Alv;), for  k=j,
W, (5, k)= V2Re(v|Alv;), for  k>j, (47)

V2Im(u Ay, for  k<j.

The representation of an operator A€ A(H) as a linear combination of Wy, is not
unique, but the representation corresponding to W, (j, k) is a privileged one satisfying
the condition of extremum

A= Z Ok ij = Z |Oéjk|2 > Z Wi(]a k) (48)
4,k=0 4,k=0 3,k=0

If A, Be A(H), then Tr(AB) = (A[Lyzy|B), that is

AB ZXA j? XB .]7 ZWA .]7 WB(.]v ) (49)

7,k=0 7,k=—0
If U:H — H is a unitary operator, then Uvgy, Uvy, ..., Uv, is also a tight frame for
H, {W),=UW;,U'} is a tight frame for A(H), and

Wetav (3, k) =Te(UT AU W) =Tr(A Wi (50)

The kernel Wj;, which generate W,(j,k) according to the generalized Weyl
rule W,(j,k) = Tr(AW,;), satisfies the restricted version of the Stratonovich-
Weyl correspondence presented in [17, 21] except the standardization. Generally,
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> ko Wik # Iy, and consequently >°7, (W, (j, k) depends on A, and not only on

Tr A.
If we start from an orthonormal basis {|v;)} of H, then {V};} is an orthonormal
basis in £(#H) and {Wj;} an orthonormal basis in A(H). For example, in the case

H=C?, by starting from {|vo>: (é) , {lv) = (2) } we get

0 1 0 0 0 0
( ) ) V10=< ) , V11=< ) (51)
0 0 1 0 0 1
G (LON a0 (0 (00
00—(O O>7 01—@(1 O>, 10="75 <—i O>, 11—(0 1)- (52)

In the case of a frame representation,

Z|Uj><vj|:]l7-l = ZWJ']':]I?U (53)
=0 =0

=

S

I
VR
(en) =
(a=) (@)
~—

S

I

and

and consequently

ZWA(j,ﬁ:ZTr(A W) =Tr A, (54)

r
J=0

for any A€ A(H). In the case of a quantum state g,
> Weli.d)=1, (55)
5=0

the purity of o is

Tro’=Tr(00)= Y  W;(jk), (56)
§,k=0
and
IWo(3, k)| < +/Tr * <1. (57)

2.2. Wigner function of a composite system

Let {v}, vi,...,v} } and {v§, v, ...,v2,} be tight frames in the Hilbert spaces #; and
Hy, and let {W,} and {W}} be the corresponding tight frames in A(#,) and A(Hs).
Then {Wj,@Wz,} is a tight frame in A(H;®H,), and any A from A(H,®@Hs) admits

the representation

A=Y W66k mWLeWE,, (58)

7,k=0£,m=0
where
W, H{0,1, .., x{0,1, ..} x{0,1,...,m } x{0,1, ..., } = R,

(59)
WA (]7 Ea ka m) :Tr(A(VV]lk@)WEm))a
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is a discrete version of the Wigner function of A : H1®Hs— Hi1®@Ho.

Since Y7L Wi = Iy, and 37,2 Wi = Ty,, the Wigner function of the partial trace
Tri A : Hy— Hs is the function

WTrlA:{O’ ]_, ...,TQ}X{O, ]_, ...,Tg}—)R,

" o (60)

W’I‘rlA(€7 m) :ijo WA(]? Ea]a m)>

and the Wigner function of the partial trace Tro A : Hi— H; is the function
Wiya 10,1, m b x{0, 1, o} = R, (61)
W"HQA(j’ k) 2222:0 w, (]a kK, E)

3. Some examples

3.1. Triangular frame representation of qubits

In the two-dimensional Euclidean space R?, the vectors

cos 2&n
‘Uk>: % (Sin£ , where kE{O, 1,2}, (62)
3

correspond to the vertices of an equilateral triangle, but in the complex Hilbert space

2
C?, they form a tight frame, Y |vx)(vg| =1I2. The operators Vi, =|v;)(v| form a tight
k=0

2
frame , Igc2y= Y |Vie){Vjr|- The corresponding nine self-adjoint operators
7k:

k=0
2 9 ¥z L V2 -1
W00—< ° >, W(n—( 13 \/€>, Woz—( _13 \/g),
0 0 75 0 76 0
0o i 1 =1 1 0
WlO:< . \/€>, W11=< _61 2\1/§>’ W12=<3\/5 L >7 (63)
s -1 1 0 -1
V6 2V3 2 V2
o 3 I b
W20=< ) 6>, W21=< . 6>, W22=< X 213>,
1 0 1 0 =
V6 6 2v3 2
2
form a tight frame in A(C?), Ixc2y= Y. |[Wie){(Wji|. If A€ A(C?) then
k=0
2
. W4:{0,1,2} x{0,1,2} =R
A= Wal(j, k) Wi, where R P ’ 64
]%::0 4L K) Wa Wa(j, k) =Tr(A W), (64)

represents a finite version of the Wigner function of A. The operators W), satisfy
War =Wig=—Wy and
Wiu=R_sWuR. ;, Wor=Rs WizRE, (65)
Was =Rz WooRL, Woe=R_s WiR! ¢,

. o cosa —sino
relations similar to (34), where R,= < ) :

sin «v COS &
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3.2. Tetrahedral frame representation for qutrits

In the three-dimensional Euclidean space R3, the vectors

T ! ! T
|U0>:§ 11, |U1>:§ -1, |U2>:§ 11, |U3>:§ -1 (66)
1 1 —1 —1

correspond to the vertices of a regular tetrahedron, but in the complex Hilbert space
C3, they form a tight frame.

3
The operators Vjj, = |v;) (vy| form a tight frame in £(C?), I cs) = |Vie) (Vjk|. The
4,k=0

corresponding operators

1 -1 -1 -1 1 0
Wm:i(q 1 1), Wm:ﬁ( 1 -1 0)
-1 1 1 0 0 1
-1 0 1 1 0 0
Wm:ﬁ 0 1 o), W03=ﬁ§<0 -1 —1)
1 0 -1 0 -1 -1
0 0 —i 1 -1 1
Wlozﬁ 0 0 1), Wu—z(—l 1 —1)
i -1 0 1 -1 1
1 0 0 -1 0 -1
ngzﬁ 0 -1 1), W13:ﬁ§ 0 1 0)
0 1 -1 -1 p —.1 (67)
0 —i 0 0 1 -1
Wzo—ﬁ i 0 —1), VVleﬁ5 -1 0 0)
0 i 0 i 0 0
1 1 -1 -1 -1 0
ngzi( 11 —1), Wy=55| -1 -1 0)
-1 -1 1 0 0 1
0 i i 0 —i 0
Wgozﬁ ( —-i 0 0 ), W31 :ﬁi 0 1)
- 0 0 0 —i 0
0 0 —i 1 1 1
W32:ﬁ(0 0 —i), W33=i(1 1 1)
i i 0 11 1
3
form a tight frame in A(C?), Lacsy= 2o |[Wir) (Wjl. If A€ A(C3) then
7,k=0

3 )
A Z Wl k) Wi where WA.{O,1,2,3}><{O,1,2,3}—>R, (68)
4,k=0 Wa(j, k) =Tr(A W),
represents a finite version of the Wigner function of A. The operators W;;, satisfy the
relations

Woo=R4Wss R},
Wiy =RIWa3sR,,
W =RsWss R,

Woe=R1 W R,
Wos =Rs W Ri,
Wis=RaWo R,
Wis=RaWo R,
Was =RoWn R{,

W20 = RiT’»WloRs’
War =RIWig R,
Wio=RsWioR},
Wa1 =Ry WioRS,
Wiaa =RoWioR{,

(69)
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similar to (34)), where R, are the rotations

-1 0 0 01 0 0 1 0
Ro=| 0 1 o], Ri=[0 0 1], Re=| 0 0 -1},
0 0 — 1 0 0 -1 0
(70)
0 0 -1 0 0 1
R3:(—1 0 o), R4:<—1 0 0).
0 1 0 0 -1 0
3.3. Icosahedral frame representation of qutrits
In the 3-dimensional Euclidean space R?, the points
:l:(177—7 0)7 :l:(_lvTv 0)7 :l:(_T7O71)7 (71)
+(0,-1,7), =£(7,0,1), +(0,1,7),
where 7= %g, are the vertices of a regular icosahedron. In the complex Hilbert space
C3, the vectors
1 -1 —T
_ 1 _ 1 _ 1
[v0) = —=— g )= g y )= (1) :
(72)

0 T 0
|’U3>: L —1 y |’U4>= 1 0 , |’U5>= 1 1
V5+/5 - V55 1 V5+/5 -
form a tight frame [22]. The operators Vi, = |v;)(vi| form a tight frame in £(C?), and
the corresponding operators Wy, form a tight frame in A(C?).

4. Some applications

4.1. Tomography of a quantum state
If there exists a rotation R such that Wj =R W;; R, then
W,(j', k') =Tr(¢ RWj R) =Tr(R" g RW;y,), (73)

that is W,(j’, k') can be measured either by rotating the quantum system or the
apparatus used for W,(j, k). The relations (63]) and (69) show that three experimental
setups are sufficient for the measurement of the Wigner function of a state in the
considered particular cases concerning the qubit and qutrit.

We are mainly interested in the cases when the starting frame {|v;)} is generated
by the action of a finite group G of rotations. In the case of such a G-frame, for any j
there exists a rotation R; € G such that |v;) = R;|vg). We have W;; = R; Wy R} for
any 7, and if the rotation R,, € G is such that Rm:R}Rk, then

Wik=R;Won Rl for j<k,
Wik=RWR] for j>k

So, certain Wj;, are related through rotations.

(74)



Frame representations of qudit quantum mechanics 13

0

Figure 1. Wigner function of three quantum states described by using the tight frame
(@) with m=30 and m=100:

Left: Pure state —= ( ); Center: Mixed state % (

s (D)) ()=(2))

The presented frame representation can be regarded as a kind of discrete version
of the continuous Wigner function of qudits described in [17, 18, 19, 20]. In the case of
a continuous phase space, the Wigner function is reconstructed by using an expansion

i

. ) ; Right: Bell
-1 2

in spherical harmonics from a finite number of measurements. If we use the frame
representation presented above, then for tomography of a quantum state o, we have
to measure all the values of the Wigner function (mean values of all W;, in the state
0). The relations (74)) show that the number of necessary experimental setups remains
relatively small when we increase the number of the elements of the frame.

4.2. Visualization of quantum states

In the case of the qubit, the vectors of a starting frame of the form

CoS 2’“—”

|og) =1/ 2 , (75)

™\ sin 257 2’”

where k € {0,1,2,...,m—1}, can be arranged in a natural way in the sequence |uvp),
|01)4eess|Um—1), and the set {0, 1,...,m—1}x{0,1,...,m—1} regarded as a natural phase
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Table 1. Dependence on m of N, and C,, in two particular cases.

Qubit state m N, Cm Qubit state m Ny Cm

3 0.3035 0.6439 3 0.2769 0.5078
4 0.1875 0.5303 4 0.1250 0.4124
) 0.2595 0.7514 5 0.1921 0.6091
6 0.2388 0.7618 6 0.1840 0.6257
7 0.2490 0.7955 7 0.1770 0.6569
8 0.2263 0.7651 8 0.1587 0.6523
9 0.2449 0.8194 9 0.1713 0.6822

10 0.2387 0.8221 10 0.1686 0.6798

( %) 15 0.2409  0.8523 ( 3 %) 15 0.1654  0.7144
i 20 02367  0.8575 iz 20  0.1618  0.7239
V2 30 02387  0.8759 o0 30 0.1631  0.7380
40 02382 0.8807 40 01623  0.7443
50 0.2387  0.8858 50 01627  0.7483
60 02385  0.8877 60 01624  0.7507
70 02387 0.8900 70 01626  0.7525
80 0238  0.8910 80 01624  0.7538
90 02387  0.8923 90 01625  0.7548
100 0.2386  0.8929 100 0.1624  0.7556

space. This allows an intuitive representation of a state. Since the tensor product of
two tight frames is a tight frame, some significant intuitive representations can be ob-
tained for a composite system of N qubits by using the equal-coordinate slice (similar to
equal-angle slice used in [17, 18, 19, 20]). In figure 1, we represent the Wigner functions
W, corresponding to three quantum states in the representations defined by the regular
tight frame ([75]) with m =30 and m=100.

If the dimension of the Hilbert space H is greater than 2, then the vectors |vg) are
distributed on a sphere in H, and the order in the sequence |vg), |v1),...,|v,) is chosen
arbitrary. So, we can not use our description {0, 1, ...,7}x{0,1,...,7} of the phase space
for direct intuitive representations.

4.83. A frame version of volume of the negative part of Wigner function

The frame version of the volume of the negative part of Wigner function [23] can be
defined as

2 (Wi (4, k)| = Win (3, k)

k
Nm="2 : 76
" 2m?2 max [ Wi (5, k)| (76)
Js

By taking into consideration the behaviour of frame representation for m — oo (see
Fig. 1 and Table 1), we can define the volume of the negative part of Wigner function
in a new way, namely as

N= lim N, (77)

m—0o0
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This new parameter does not depend on the particular frame representation (75 we
choose. Two examples are presented in Table 1.

4.4. Coherence of a state with respect to a frame

In the case of a frame representation, for any quantum state p, we have

Doloul=ly = Y Wiy=Ly = Y W,(ji)=1. (78)

J=0 J=0 J=0

The parameter

Crm o S W, B) (79)
i#k
may contain some information concerning the coherence of a qubit quantum state p.
The frame coherence of a qubit might be defined as the limit

C= lim Cn, (30)

m—0oQ
which seems to exist for any state o (see Table 1), and does not depend on the particular
frame representation (75]) we choose.

4.5. Qubit regarded as an orthogonal projection of qutrit

The use of the triangular frame representation of qubit makes more transparent the
relation qubit-qutrit. The tight frame

) = Vi , |u1>=<_?>, |u2>=<_?), (81)

0

V2

V2
allows us to identify the Hilbert space C? of qubit with the subspace

S={ aplwo) +arlw1) | ag, meC} (82)
of the Hilbert space C? of qutrit by using the linear isometry (see (d))

C*— S agleo)+ailer) = aglwo)+ayfw), (83)
where

2
o) = ( ) ) )= ( 0 ) ) - i - 1)
o) ) G| | E ]
-% v

Since {|wp), |wy)} is an orthonormal basis of S, the orthogonal projector corresponding
toSis P:C? — S,

W W= Wl

P = |wo) (wo|+|wr) (w1 | =

(85)

Wl W= Wi

W= W Wl
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The orthogonal projector

A(C?) — A(S)=A(C?) : Aws PAP (86)
is a positive map

A>0 = (z,PAPx)=(Px, APz)>0.
For any A€ A(C?), the matrix of PAP in the basis {|eg), |e1)} is A’=LPAPL”, where

> 11

L= V? Yo V6 (87)
1 1
V2 V2
satisfies LLT = T2 and LTL = P. The tight frame (63]) of A(C?) is the orthogonal
projection of the orthonormal basis

1 1
1 00 0 =5 0 00 -5
Ew=| 0 0 0 [, Eo = J% 0 0|, Ep=| 00 0],
1
00'0 0 0 0 75 0 0
.oﬁo 0 0 0 0 0 0
Ew= -4 00|, Eu=[010], Ee={0 0 5| (88
1
0 00 0 0 0 0 &5 0
00 o5 0 0 0 0 0 0
E20: OO O,EQlZO Oﬁ,EQQ—OOO,
-5 0 0 0 - 0 0 0 1

of A(C?), that is
Wj,=LPE;PL", for any i,7€{0,1,2}. (89)

The map A(C?)— A(C?) : A A'=LPAPL" from the qutrit to qubit is surjective
but not injective. Since W, =LPE;;PLT = LTW;,L=PE;,P, we get

W (j, k) =Tr(W;, A') =Te(W;. LPAPLT) = Tr(LTW,;, LPAP)
=Tr(PE;,PPAP)=Tr(E;,PAP),

that is , the Wigner function corresponding to A’ is

Wa(j, k) =Tr(E;; PAP). (90)

4.6. Gaussian states of qubit

In order to simplify the notations, in this section, we consider only tight frames {W;;}
obtained by starting from frames (75) with odd m =2¢+1. Instead of the phase space
{0,1,....,m—1}x{0,1,....,m—1} we use {—€,0+1,....0—1 £} x {—0,0+1,....,0—1,¢}, and
define

ij :VVj(modm) k(mod m) (91)
for any j,ke{—¢,(+1,....0—1,¢}. A function of the form (see Fig.2)

Fo i {=004,  1, 0x{—0, 4, -1, 0 =R, fu(f, k) =e U (92)
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Figure 2. The discrete Gaussian function f;,5(j, k) =e~(+K*)/2 in the cases m=71,
m=11 and m=21.

Table 2. Eigenvalues of g, in certain particular cases.

K m Eigenvalues of g, K m Eigenvalues of g,
3 0.935639 0.0643606 3 0.928317 0.0716833
5 0.865239 0.134761 5 0.949233 0.0507668
1 7 0.949816 0.0501843 1 7 0.976296 0.023707
2 9 0.977093 0.0229066 9 0.986562 0.0134375
11 0.987222 0.0127781 11 0.991348 0.0086524
21 0.997449 0.00250995 21 0.997774 0.00222598

with k€ (0,00), is a discrete version of the Gaussian function g,:RxR—R, g.(z,y)=

(@ ty?)

A quantum state of the form
¢
Z e—n(jz—l-kz) ij
Jk=—t
Z .
To( 3 e IT,)

Gk=—t

Ok - C2 — (C2, Ok = (93)

can be regarded as a Gaussian state of the qubit. We do not know which restrictions ¢
and x have to satisfy in order to have g, >0. In the investigated cases (see Table 2),
the operators o, defined in this way are density operators. We think that the Gaussian
states of the qubit may have some interesting properties. Our intention is to show that
the frame representation offers the possibility to define new parameters describing the
quantum states as well as some "special” states.

4.7. Error correction of measurements

The redundant information introduced by passing from orthogonal bases to tight frames
may allow us to eliminate certain errors, to increase the precision of measurements [7].
For example, in the odd dimensional case, if g is a quantum state, W}, are the operators
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describing the qudit in a frame representation and I1(j, k) are the operators (I2)), then
it is known [24] that the error

o= (Tr(e W) +X) Wi | (94)
J,k=0
is generally smaller than the error

— 1 . 4
loe— > (5Te(eI1(5, k) +pe) (5, &) | (95)
J,k=—s
for any random numbers A and g, lying in a small neighborhood (—¢, €) of 0. In order
to increase the precision of a measurement, we have to start from a frame containing
more vectors.

4.8. Error detection and correction

Only a part of the operators Wj; used in a frame representation are linearly independent.
For example, in the case of the triangular frame representation of qubits, any five of
the eight operators W;;, from (63)) are linearly dependent. This means that, for any five
of the eight values W,(j, k), a certain linear combination must be null. If only a small

part of W,(j, k) contain errors, these errors can be detected and corrected by using the
8 _

15 = 00 restrictions the values of the Wigner function of any state ¢ must satisfy.

5. Concluding remarks

The method to obtain a tight frame {W;;} of A(#) by starting from a tight frame {|v;)}
of H seems (to our knowledge) to be new. Based on it, we have obtained some explicit
representations for qubits and qutrits. In the case of coherent states, the representation
of a pure state as a linear combination of coherent states is not unique, but there
exists a standard representation based on the resolution of the identity very useful in
applications. In a very similar way, the representation of a quantum state or observable
as a linear combination of Wj;, is not unique, but there exists a representation based on
the resolution of the identity. By using this standard representation, we define a more
general version of the discrete Wigner function. We think that the presented approach
may be useful in the investigation of the properties of the quantum systems involving
qubits and qutrits.
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