
ar
X

iv
:2

30
5.

19
28

7v
13

  [
qu

an
t-

ph
] 

 2
8 

M
ay

 2
02

4

Frame representations of qudit quantum mechanics

Nicolae Cotfas

Faculty of Physics, University of Bucharest,

P.O. Box MG-11, 077125 Bucharest, Romania.

E-mail: nicolae.cotfas@unibuc.ro, https://unibuc.ro/user/nicolae.cotfas/

29 May 2024

Abstract. There exist many attempts to define a Wigner function for qudits, each

of them coming with its advantages and limitations. The existing finite versions have

simple definitions, but they are artificial in their construction and do not allow an

intuitive state analysis. The continuous versions have more complicated definitions,

but they are similar to the original Wigner function and allow a visualization of the

quantum states. The version based on the concept of tight frame we present is finite,

but it has certain properties and applications similar to those of continuous versions.

Based on the frame representation, we present several graphical representations of

qubit states, and define two new parameters concerning them. We show that, from a

mathematical point of view, the qubit is the orthogonal projection of qutrit.

1. Introduction

In the case of a qudit described by a complex d-dimensional Hilbert space H, the

complex Hilbert space L(H) of all the linear operators A : H → H with the inner

product 〈〈A,B〉〉=Tr(A†B) and the real Hilbert space A(H) of all the self-adjoint (also

called Hermitian) operators A :H→H with the inner product 〈〈A,B〉〉=Tr(AB) play

a fundamental role. Their elements can be described by using certain orthogonal bases

[1, 2, 3, 4], but it is known that a frame representation allows a description of the quasi-

probability representations of finite quantum systems in a unified formalism [5, 6], and

has several other remarkable properties [6, 7].

In the case when H is odd-dimensional, a discrete version of the Wigner function

of a self-adjoint operator A : H → H is usually defined as (j, k) 7→ 1
d
Tr(AΠ(j, k)),

where {Π(j, k)} is the orthogonal basis of A(H) formed by a discrete version of the

displaced parity operators. We show that a tight frame {Wjk} of A(H) can be obtained

in a simple way by starting from any finite tight frame {|vj〉} of H, and try to prove

that, in certain cases, the function (j, k) 7→ Tr(AWjk) containing all the information

concerning A is a useful representation. The frame representations defined in this way

may help us to extract some useful information concerning the quantum states of qudits,

a deeper analysis of nonclassicality, coherence and entanglement of quantum states.

Several examples and some possible applications are presented.

http://arxiv.org/abs/2305.19287v13
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1.1. Finite tight frames

Let K be a finite-dimensional Hilbert space over the field F, where F=R or F=C. In

the next sections, K=H or K=L(H) or K=A(H). A set {u0, u1, ..., um} is a spanning

set for K if any element of K can be represented as a linear combination of u0, u1,..., um
with coefficients from F. A sequence of vectors u0, u1 , ..., um is a frame for K if there

exist two constants α, β∈(0,∞) such that

α||x||2≤
m
∑

k=0

|〈uk|x〉|2≤β||x||2 (1)

for any x∈K. It is known [8, 9] that in a finite-dimensional Hilbert space, any spanning

set is a frame.

A frame u0, u1, ..., um is called a tight frame if in (1) we can choose α= β, that is if
∑m

k=0 |〈uk|x〉|2=α||x||2, for any x∈K. Without loss of generality, we can assume that

α=1, prove that IK=
m
∑

k=0

|uk〉〈uk|, and consequently

|x〉 ≡ IK|x〉=
m
∑

k=0

|uk〉〈uk|x〉,

A ≡ IKAIK=
m
∑

j,k=0

|uj〉〈uj|A|uk〉〈uk|,
(2)

for any linear operator A : K → K and any x∈K.

A tight frame can be obtained from any frame [8, 9]. If u0, u1, ..., um is a frame,

then the frame operator

S :K→K, S=
m
∑

k=0

|uk〉〈uk|, (3)

is self-adjoint, positive-definite, invertible and

IK=S
−1/2SS−1/2=

m
∑

k=0

S−1/2|uk〉〈uk|S−1/2, (4)

that is, u0 = S−1/2u0, ..., um = S−1/2um is a tight frame. So, a large variety of tight

frames of H, L(H) and A(H) can be obtained by starting from spanning sets of these

spaces.

Any orthonormal basis is a tight frame. A tight frame which is not an orthogonal

basis contains more vectors than the dimension of the space, and the representation

of a vector as a linear combination of the elements of the tight frame is not unique.

Nevertheless, the indicated standard representation is a privileged one in the sense

|x〉=
m
∑

k=0

|uk〉〈uk|x〉,

|x〉=
m
∑

k=0

|uk〉αk















⇒
m
∑

k=0

|αk|2 ≥
m
∑

k=0

|〈uk|x〉|2. (5)

For example, in the case H=C
2, the vectors

|u0〉=





√

2
3

0



 , |u1〉=
(

− 1√
6
1√
2

)

, |u2〉=
(

− 1√
6

− 1√
2

)

, (6)
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satisfying the relation |u0〉+|u1〉+|u2〉=0, form a tight frame, and for any |x〉∈C2 and

any λ∈C, we have

|x〉=
2
∑

k=0

|uk〉〈uk|x〉=
2
∑

k=0

|uk〉(〈uk|x〉+λ),
2
∑

k=0

|〈uk|x〉+λ|2=
2
∑

k=0

|〈uk|x〉|2+|λ|2≥
2
∑

k=0

|〈uk|x〉|2.
. (7)

The orthogonal projection of an orthonormal basis of a Hilbert space onto a

subspace is a tight frame in subspace. Any tight frame {u0, u1, ..., um} of H allows us

to embed H into the Hilbert space Fm+1 such that {u0, u1, ..., um} is the orthogonal

projection of the canonical basis {ε0, ε1, ..., εm} of F
m+1. If {e0, e1, ..., ed−1} is an

orthonormal basis of H, then {w0, w1, ..., wd−1}, where

|wk〉=











〈u0|ek〉
〈u1|ek〉

...

〈um|ek〉











, (8)

is an orthonormal system,

〈wj|wk〉=
m
∑

i=0

〈ui|ej〉〈ui|ek〉=
m
∑

i=0

〈ej |ui〉〈ui|ek〉=〈ej|ek〉=δjk.

The Hilbert space H can be identified with the subspace S = span{w0, w1, ..., wd−1} of

F
m+1 by using the linear isometry

H→S :

d−1
∑

j=0

αj|ej〉 7→
d−1
∑

j=0

αj |wj〉. (9)

The orthogonal projector corresponding to S is P :Fm+1→S, P =
d−1
∑

j=0

|wj〉〈wj|, and

P |εk〉=
d−1
∑

j=0

|wj〉〈wj|εk〉=
d−1
∑

j=0

|wj〉〈εk|wj〉=
d−1
∑

j=0

|wj〉〈uk|wj〉

=
d−1
∑

j=0

|wj〉〈wj|uk〉≡
d−1
∑

j=0

|ej〉〈ej|uk〉= |uk〉.

1.2. A finite version of the Wigner function

The finite versions of Wigner function [1, 6, 10, 11, 12, 13, 14, 15, 16] play an important

role in description of qudits. For simplicity, in this section, we consider only quantum

systems with an odd-dimensional (d= 2s+1) Hilbert space H, which can be regarded

as the space of all the functions ψ : {−s,−s+1, ..., s−1, s}→C with the inner product

〈ϕ|ψ〉=∑s
j=−s ϕ(j)ψ(j). Each function ψ∈H can be extended up to a periodic function

ψ :Z→C of period d.

The displacement operators D(j, k) :H→H,
D(j, k)ψ(n) = e−(πi/d)kj e(2πi/d)kn ψ(n−j), (10)



Frame representations of qudit quantum mechanics 4

form [1, 14, 15, 16] an orthogonal basis in L(H),

〈〈D(j, k), D(n,m)〉〉=d δjn δkm,

IL(H)=
1
d

s
∑

j,k=−s

|D(j, k)〉〉〈〈D(j, k)|, (11)

and the displaced parity operators Π(j, k) :H→H,
Π(j, k) = D(j, k) ΠD†(j, k), (12)

where Π:H→H, Πψ(n)=ψ(−n), form [1, 14, 15, 16] an orthogonal basis in A(H),

〈〈Π(j, k),Π(n,m)〉〉=d δjn δkm,

IA(H)=
1
d

s
∑

j,k=−s

|Π(j, k)〉〉〈〈Π(j, k)|. (13)

Any operator A∈A(H) admits the representations

A=
s
∑

j,k=−s

χ
A
(j, k)D(j, k)=

s
∑

j,k=−s

WA(j, k) Π(j, k), (14)

where

χ
A
:{−s,−s+1, ..., s}×{−s,−s+1, ..., s}−→C,

χ
A
(j, k)= 1

d
〈〈D(j, k)|A〉〉= 1

d
Tr(AD†(j, k))

(15)

is the Weyl characteristic function [1, 12, 13] of A, and

WA :{−s,−s+1, ..., s}×{−s,−s+1, ..., s}−→R,

WA(j, k)=
1
d
〈〈Π(j, k)|A〉〉= 1

d
Tr(AΠ(j, k)),

(16)

is the Wigner function [1, 16] of A. If A,B∈A(H), then

Tr(AB)=〈〈A|B〉〉= 1
d

s
∑

j,k=−s

〈〈A|D(j, k)〉〉〈〈D(j, k)|B〉〉,

Tr(AB)=〈〈A|B〉〉= 1
d

s
∑

j,k=−s

〈〈A|Π(j, k)〉〉〈〈Π(j, k)|B〉〉,
(17)

that is

Tr(AB)=d

s
∑

j,k=−s

χ
A
(j, k)χ

B
(j, k)=d

s
∑

j,k=−s

WA(j, k)WB(j, k). (18)

For any κ∈(0,∞), the function

gκ :{−s,−s+1, ..., s−1, s}→R, gκ(n)=
∞
∑

m=−∞
e−(κπ/d)(n+md)2 (19)

represents a discrete version of the Gaussian function R→R : q 7→ e−(κπ/h)q2 . Under

the Fourier transform

F :H→H :ψ 7→ F [ψ], F [ψ](k)=
1√
d

s
∑

n=−s

e−(2πi/d)knψ(n), (20)
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the discrete Gaussian function transforms as

F [gκ]=
1√
κ
g1/κ. (21)

Particularly, the normalized function

|0, 0〉= 1

||g1||
|g1〉 (22)

is an eigenfunction of F corresponding to the eigenvalue 1, and can be regarded as a

discrete version of the vacuum state.

The discrete coherent states

|j, k〉=D(j, k)|0, 0〉 (23)

form a tight frame in H,
1

d

s
∑

j,k=−s

|j, k〉〈j, k|=IH. (24)

1.3. A discrete phase-space representation of qutrit

In the case of the qutrit, C3 ≡ {ψ :{−1, 0, 1}→C}, and the displacement operators are

D(−1,−1)=







0 e
πi

3 0

0 0 e−
πi

3

−1 0 0






, D(−1, 0)=





0 1 0

0 0 1

1 0 0



 , D(−1, 1)=







0 e−
πi

3 0

0 0 e
πi

3

−1 0 0






,

D(0,−1)=







e
2πi

3 0 0

0 1 0

0 0 e−
2πi

3






, D(0, 0)=





1 0 0

0 1 0

0 0 1



 , D(0, 1)=







e−
2πi

3 0 0

0 1 0

0 0 e
2πi

3






,

D(1,−1)=







0 0 −1

e
πi

3 0 0

0 e−
πi

3 0






, D(1, 0)=





0 0 1

1 0 0

0 1 0



 , D(1, 1)=







0 0 −1

e−
πi

3 0 0

0 e
πi

3 0






.

(25)

The Wigner function of a linear operator A∈A(C3) is

WA :{−1, 0, 1}×{−1, 0, 1}−→R, WA(j, k)=
1

3
〈〈Π(j, k)|A〉〉= 1

3
Tr(AΠ(j, k)), (26)

where the displaced parity operators Π(j, k) are

Π(−1,−1)=







1 0 0

0 0 −e−
πi

3

0 −e
πi

3 0






, Π(−1, 0)=





1 0 0

0 0 1

0 1 0



 , Π(−1, 1)=







1 0 0

0 0 −e
πi

3

0 −e−
πi

3 0






,

Π(0,−1)=







0 0 e−
2πi

3

0 1 0

e
2πi

3 0 0






, Π(0, 0)=





0 0 1

0 1 0

1 0 0



 , Π(0, 1)=







0 0 e
2πi

3

0 1 0

e−
2πi

3 0 0






,

Π(1,−1)=







0 −e−
πi

3 0

−e
πi

3 0 0

0 0 1






, Π(1, 0)=





0 1 0

1 0 0

0 0 1



 , Π(1, 1)=







0 −e
πi

3 0

−e−
πi

3 0 0

0 0 1






.

(27)
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The discrete Fourier transform

F :C3−→C
3, F=

1√
3







e−
2πi

3 1 e
2πi

3

1 1 1

e
2πi

3 1 e−
2πi

3






(28)

has the distinct eigenvalues 1, −i, −1, and the spectral decomposition

F= |F0〉〈F0|− i|F1〉〈F1|−|F2〉〈F2|, (29)

where

|F0〉=











1
2

√

1− 1√
3

1√
2

√

1 + 1√
3

1
2

√

1− 1√
3











, |F1〉=







− 1√
2

0
1√
2






, |F2〉=











1
2

√

1 + 1√
3

− 1√
2

√

1− 1√
3

1
2

√

1 + 1√
3











. (30)

The discrete vacuum state is |0, 0〉 = |F0〉, and the nine discrete coherent states

|j, k〉=D(j, k)|0, 0〉 form a tight frame in C3, namely 1
3

1
∑

j,k=−1

|j, k〉〈j, k|=IC3.

1.4. A discrete phase-space representation of qubit

In the case of the qubit, the operators

K00=
1
2
(I+σx+σy+σz), K01=

1
2
(I−σx−σy+σz),

K10=
1
2
(I+σx−σy−σz), K11=

1
2
(I−σx+σy−σz)

(31)

proposed independently by Wootters [10] and Feynman [11], form an orthogonal basis

in A(C2). For A∈A(C2), the function

WA :{0, 1}×{0, 1}−→R, WA(j, k)=
1

2
〈〈Kjk|A〉〉=

1

2
Tr(AKjk), (32)

represents the Wigner function of A.

1.5. A continuous phase-space representation of qubit

In the case of a two-level quantum system (qubit), the surface of a sphere is used

as a phase space, and the continuous Wigner function of a state ̺ is defined as

[6, 17, 18, 19, 20]

W̺(θ, φ)=Tr(̺∆(θ, φ)), (33)

where θ∈ [0, π], φ∈ [0, 2π) are the Euler angles,

∆(θ, φ)=R(θ, φ,Φ)ΠR†(θ, φ,Φ), (34)

Π = 1
2
(I +

√
3 σz), and R(θ, φ,Φ) is the rotation operator R(θ, φ,Φ) =

e−iφσz/2e−iθσy/2e−iΦσz/2 .

In the case of a composite system of N qubits, the phase space is a product of N

spheres, and the Wigner function of a state ̺ is defined as

W̺(θ1, ..., θN , φ1, ..., φN)=Tr

(

̺

N
⊗

i=1

∆(θi, φi)

)

. (35)
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For visualization of a state of the composite system, it is often sufficient to consider the

equal-angle slice [17]

WEA
̺ (θ, φ)=W̺(θ, ..., θ, φ, ..., φ). (36)

2. Frame representations of qudit quantum states and observables

2.1. Wigner function of a single qudit

In order to obtain a frame representation for a qudit with the complex Hilbert spaceH of

dimension d, we start from a tight frame v0, v1, ..., vr forH satisfying IH=
∑r

j=0 |vj〉〈vj|.
For any A∈L(H), we have

A=IHA IH=
r
∑

j,k=0

|vj〉〈vj|A|vk〉〈vk|=
r
∑

j,k=0

〈vj |A|vk〉|vj〉〈vk|. (37)

Particularly, this means that the operators

Vjk= |vj〉〈vk|, where j, k∈{0, 1, ..., r} (38)

span L(H), and consequently form a frame.

Theorem 1. The frame {Vjk} is a tight frame for the complex Hilbert space L(H), that

is

IL(H)=
r
∑

j,k=0

|Vjk〉〉〈〈Vjk|. (39)

Proof. If {|ej〉} is an orthonormal basis of H, then {|Ejk〉〉= |ej〉〈ek|} is an orthonormal

basis of L(H). Since

IH=
r
∑

j=0

|vj〉〈vj| ⇒
r
∑

j=0

〈en|vj〉〈vj|em〉=δnm, (40)

(|u〉〈v|)† = |v〉〈u|, and Tr(|em〉〈en|A) = 〈en|A|em〉, the frame operator S =
∑r

j,k=0 |Vjk〉〉〈〈Vjk| satisfies
〈〈Enm|S|Eiℓ〉〉=

∑r
j,k=0〈〈Enm|Vjk〉〉〈〈Vjk|Eiℓ〉〉

=
∑r

j,k=0Tr(|em〉〈en| |vj〉〈vk|) Tr(|vk〉〈vj | |ei〉〈eℓ| )
=
∑r

j,k=0〈en|vj〉〈vk|em〉 〈vj |ei〉〈eℓ|vk〉
=
∑r

j=0〈en|vj〉〈vj|ei〉
∑r

k=0〈eℓ|vk〉〈vk|em〉=δniδmℓ.

Any operator A∈L(H) admits the representation

A=

r
∑

j,k=0

χ
A
(j, k) Vjk, where

χ
A
:{0, 1, ..., r}×{0, 1, ..., r}→C,

χ
A
(j, k)=〈〈Vjk|A〉〉=Tr(AV †

jk).
(41)

It can be regarded as a version of the discrete Weyl characteristic function of A. The

displacement operators D(j, k) are unitary operators satisfying the relation

D(j, k)D(n,m)=e(πi/d)(kn−jm)D(j+n, k+m). (42)
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The operators Vjk satisfy V †
jk=Vkj and the relations

Vjk Vnm=〈vk|vn〉Vjm, (43)

instead of (42), but they are not unitary operators.

Theorem 2. In the real Hilbert space A(H), the self-adjoint operators

Wjj=Vjj, for 0 ≤ j ≤ r

Wjk=
1√
2
(Vjk+Vkj), for 0 ≤ j < k ≤ r

Wjk=
i√
2
(Vkj−Vjk), for 0 ≤ k < j ≤ r

(44)

form a tight frame, that is IA(H)=
∑r

j,k=0 |Wjk〉〉〈〈Wjk|.
Proof. In L(H), S=

∑r
j,k=0 |Wjk〉〉〈〈Wjk| satisfies

S=
r
∑

j,k=0

|Wjk〉〉〈〈Wjk|=
r
∑

j,k=0

|Vjk〉〉〈〈Vjk|=IL(H), (45)

but the restriction S|A(H) of S to A(H) is IA(H).

Any operator A∈A(H) admits the representation

A=

r
∑

j,k=0

W
A
(j, k)Wjk, where

W
A
:{0, 1, ..., r}×{0, 1, ..., r}→R,

W
A
(j, k)=〈〈Wjk|A〉〉=Tr(AWjk).

(46)

It can be regarded as a version of the discrete Wigner function of A. Explicitely,

W
A
(j, k)=















〈vj|A|vj〉, for k=j,
√
2Re〈vk|A|vj〉, for k>j,

√
2Im〈vk|A|vj〉, for k<j.

(47)

The representation of an operator A∈A(H) as a linear combination of Wjk is not

unique, but the representation corresponding to W
A
(j, k) is a privileged one satisfying

the condition of extremum

A=
r
∑

j,k=0

αjkWjk ⇒
r
∑

j,k=0

|αjk|2 ≥
r
∑

j,k=0

W2
A
(j, k). (48)

If A,B∈A(H), then Tr(AB)=〈〈A|IA(H)|B〉〉, that is

Tr(AB)=

r
∑

j,k=0

χ
A
(j, k)χ

B
(j, k)=

r
∑

j,k=−0

WA(j, k)WB(j, k). (49)

If U :H → H is a unitary operator, then Uv0, Uv1, ..., Uvr is also a tight frame for

H, {W ′
jk=UWjkU

†} is a tight frame for A(H), and

WU†AU(j, k)=Tr(U †AU Wjk)=Tr(AW ′
jk). (50)

The kernel Wjk, which generate W
A
(j, k) according to the generalized Weyl

rule W
A
(j, k) = Tr(AWjk), satisfies the restricted version of the Stratonovich-

Weyl correspondence presented in [17, 21] except the standardization. Generally,
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∑r
j,k=0Wjk 6= IH, and consequently

∑r
j,k=0WA

(j, k) depends on A, and not only on

TrA.
If we start from an orthonormal basis {|vj〉} of H, then {Vjk} is an orthonormal

basis in L(H) and {Wjk} an orthonormal basis in A(H). For example, in the case

H=C2, by starting from

{

|v0〉=
(

1

0

)

, {|v1〉=
(

0

1

)}

we get

V00=

(

1 0

0 0

)

, V01=

(

0 1

0 0

)

, V10=

(

0 0

1 0

)

, V11=

(

0 0

0 1

)

(51)

and

W00=

(

1 0

0 0

)

, W01=
1√
2

(

0 1

1 0

)

, W10=
1√
2

(

0 i

−i 0

)

, W11=

(

0 0

0 1

)

. (52)

In the case of a frame representation,
r
∑

j=0

|vj〉〈vj|=IH ⇒
r
∑

j=0

Wjj=IH, (53)

and consequently
r
∑

j=0

WA(j, j)=

r
∑

j=0

Tr(AWjj)=TrA, (54)

for any A∈A(H). In the case of a quantum state ̺,
r
∑

j=0

W̺(j, j)=1, (55)

the purity of ̺ is

Tr ̺2=Tr(̺ ̺)=
r
∑

j,k=0

W2
̺ (j, k), (56)

and

|W̺(j, k)|≤
√

Tr ̺2≤1. (57)

2.2. Wigner function of a composite system

Let {v10, v11 , ..., v1r1} and {v20, v21, ..., v2r2} be tight frames in the Hilbert spaces H1 and

H2, and let {W 1
jk} and {W 2

ℓm} be the corresponding tight frames in A(H1) and A(H2).

Then {W 1
jk⊗W 2

ℓm} is a tight frame in A(H1⊗H2), and any A from A(H1⊗H2) admits

the representation

A =

r1
∑

j,k=0

r2
∑

ℓ,m=0

W
A
(j, ℓ, k,m)W 1

jk⊗W 2
ℓm, (58)

where

W
A
:{0, 1, ..., r1}×{0, 1, ..., r2}×{0, 1, ..., r1}×{0, 1, ..., r2}→R,

W
A
(j, ℓ, k,m)=Tr(A(W 1

jk⊗W 2
ℓm)),

(59)
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is a discrete version of the Wigner function of A : H1⊗H2→ H1⊗H2.

Since
∑r1

j=0W
1
jj = IH1

and
∑r2

ℓ=0W
2
ℓℓ = IH2

, the Wigner function of the partial trace

Tr1A : H2→ H2 is the function

W
Tr1A

:{0, 1, ..., r2}×{0, 1, ..., r2}→R,

W
Tr1A

(ℓ,m)=
∑r1

j=0WA
(j, ℓ, j,m),

(60)

and the Wigner function of the partial trace Tr2A : H1→ H1 is the function

W
Tr2A

:{0, 1, ..., r1}×{0, 1, ..., r1}→R,

W
Tr2A

(j, k)=
∑r2

ℓ=0WA
(j, ℓ, k, ℓ).

(61)

3. Some examples

3.1. Triangular frame representation of qubits

In the two-dimensional Euclidean space R2, the vectors

|vk〉=
√

2
3

(

cos 2kπ
3

sin 2kπ
3

)

, where k∈{0, 1, 2}, (62)

correspond to the vertices of an equilateral triangle, but in the complex Hilbert space

C2, they form a tight frame,
2
∑

k=0

|vk〉〈vk|= I2. The operators Vjk = |vj〉〈vk| form a tight

frame , IL(C2)=
2
∑

j,k=0

|Vjk〉〉〈〈Vjk|. The corresponding nine self-adjoint operators

W00=

(

2
3 0

0 0

)

, W01=





−
√

2
3

1
√

6

1
√

6
0



, W02=





−
√

2
3

−1
√

6

−1
√

6
0



,

W10=

(

0 i
√

6

−i
√

6
0

)

, W11=

( 1
6

−1
2
√

3

−1
2
√

3
1
2

)

, W12=

( 1
3
√

2
0

0 − 1
√

2

)

,

W20=

(

0 −i
√

6

i
√

6
0

)

, W21=

(

0 i
√

6

−i
√

6
0

)

, W22=

( 1
6

1
2
√

3

1
2
√

3
1
2

)

,

(63)

form a tight frame in A(C2), IA(C2)=
2
∑

j,k=0

|Wjk〉〉〈〈Wjk|. If A∈A(C2) then

A=
2
∑

j,k=0

WA(j, k) Wjk, where
WA :{0, 1, 2}×{0, 1, 2}→R,

WA(j, k)=Tr(AWjk),
(64)

represents a finite version of the Wigner function of A. The operators Wjk satisfy

W21=W10=−W20 and

W11=R−π
3
W00R

†
−π

3

, W01=Rπ
3
W12R

†
π
3

,

W22=Rπ
3
W00R

†
π
3

, W02=R−π
3
W12R

†
−π

3

,
(65)

relations similar to (34), where Rα=

(

cosα − sinα

sinα cosα

)

.
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3.2. Tetrahedral frame representation for qutrits

In the three-dimensional Euclidean space R3, the vectors

|v0〉=
1

2







−1

1

1






, |v1〉=

1

2







1

−1

1






, |v2〉=

1

2







1

1

−1






, |v3〉=

1

2







−1

−1

−1






(66)

correspond to the vertices of a regular tetrahedron, but in the complex Hilbert space
C3, they form a tight frame.

The operators Vjk= |vj〉〈vk| form a tight frame in L(C3), IL(C3)=
3
∑

j,k=0

|Vjk〉〉〈〈Vjk|. The
corresponding operators

W00=
1
4





1 −1 −1

−1 1 1

−1 1 1



, W01=
1

2
√

2





−1 1 0

1 −1 0

0 0 1





W02=
1

2
√

2





−1 0 1

0 1 0

1 0 −1



, W03=
1

2
√

2





1 0 0

0 −1 −1

0 −1 −1





W10=
1

2
√

2





0 0 −i

0 0 i

i −i 0



, W11=
1
4





1 −1 1

−1 1 −1

1 −1 1





W12=
1

2
√

2





1 0 0

0 −1 1

0 1 −1



, W13=
1

2
√

2





−1 0 −1

0 1 0

−1 0 −1





W20=
1

2
√

2





0 −i 0

i 0 −i

0 i 0



, W21=
1

2
√

2





0 i −i

−i 0 0

i 0 0





W22=
1
4





1 1 −1

1 1 −1

−1 −1 1



, W23=
1

2
√

2





−1 −1 0

−1 −1 0

0 0 1





W30=
1

2
√

2





0 i i

−i 0 0

−i 0 0



, W31=
1

2
√

2





0 −i 0

i 0 i

0 −i 0





W32=
1

2
√

2





0 0 −i

0 0 −i

i i 0



, W33=
1
4





1 1 1

1 1 1

1 1 1





(67)

form a tight frame in A(C3), IA(C3)=
3
∑

j,k=0

|Wjk〉〉〈〈Wjk|. If A∈A(C3) then

A=

3
∑

j,k=0

WA(j, k) Wjk, where
WA :{0, 1, 2, 3}×{0, 1, 2, 3}→R,

WA(j, k)=Tr(AWjk),
(68)

represents a finite version of the Wigner function of A. The operators Wjk satisfy the

relations

W00=R4W33R†
4, W02=R1W01R†

1, W20=R†
3W10R3,

W11=R†
2W33R2, W03=R3W01R†

3, W21=R†
1W10R1,

W22=R3W33R†
3, W12=R4W01R†

4, W30=R3W10R†
3,

W13=R2W01R†
2, W31=R2W10R†

2,

W23=R0W01R†
0, W32=R0W10R†

0,

(69)
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similar to (34), where Ri are the rotations

R0=





−1 0 0

0 1 0

0 0 −1



 , R1=





0 1 0

0 0 1

1 0 0



 , R2=





0 1 0

0 0 −1

−1 0 0



 ,

R3=





0 0 −1

−1 0 0

0 1 0



 , R4=





0 0 1

−1 0 0

0 −1 0



 .

(70)

3.3. Icosahedral frame representation of qutrits

In the 3-dimensional Euclidean space R3, the points

±(1, τ, 0), ±(−1, τ, 0), ±(−τ, 0, 1),
±(0,−1, τ), ±(τ, 0, 1), ±(0, 1, τ),

(71)

where τ = 1+
√
5

2
, are the vertices of a regular icosahedron. In the complex Hilbert space

C3, the vectors

|v0〉= 1√
5+

√

5





1

τ

0



 , |v1〉= 1√
5+

√

5





−1

τ

0



 , |v2〉= 1√
5+

√

5





−τ

0

1



 ,

|v3〉= 1√
5+

√

5





0

−1

τ



 , |v4〉= 1√
5+

√

5





τ

0

1



 , |v5〉= 1√
5+

√

5





0

1

τ





(72)

form a tight frame [22]. The operators Vjk = |vj〉〈vk| form a tight frame in L(C3), and

the corresponding operators Wjk form a tight frame in A(C3).

4. Some applications

4.1. Tomography of a quantum state

If there exists a rotation R such that Wj′k′ =RWjk R
†, then

W̺(j
′, k′)=Tr(̺RWjk R

†)=Tr(R† ̺RWjk), (73)

that is W̺(j
′, k′) can be measured either by rotating the quantum system or the

apparatus used for W̺(j, k). The relations (65) and (69) show that three experimental

setups are sufficient for the measurement of the Wigner function of a state in the

considered particular cases concerning the qubit and qutrit.

We are mainly interested in the cases when the starting frame {|vj〉} is generated

by the action of a finite group G of rotations. In the case of such a G-frame, for any j

there exists a rotation Rj ∈G such that |vj〉=Rj |v0〉. We have Wjj =Rj W00R
†
j for

any j, and if the rotation Rm∈G is such that Rm=R†
jRk, then

Wjk=RjW0mR
†
j for j<k,

Wjk=RjWm0R
†
j for j>k

(74)

So, certain Wjk are related through rotations.



Frame representations of qudit quantum mechanics 13

Figure 1. Wigner function of three quantum states described by using the tight frame

(75) with m=30 and m=100:

Left: Pure state 1
√

2

(

1

−i

)

; Center: Mixed state 1
3

(

1 i

−i 2

)

; Right: Bell

state 1
√

2

((

1

0

)

⊗
(

0

1

)

+

(

0

1

)

⊗
(

1

0

))

.

The presented frame representation can be regarded as a kind of discrete version

of the continuous Wigner function of qudits described in [17, 18, 19, 20]. In the case of

a continuous phase space, the Wigner function is reconstructed by using an expansion

in spherical harmonics from a finite number of measurements. If we use the frame

representation presented above, then for tomography of a quantum state ̺, we have

to measure all the values of the Wigner function (mean values of all Wjk in the state

̺). The relations (74) show that the number of necessary experimental setups remains

relatively small when we increase the number of the elements of the frame.

4.2. Visualization of quantum states

In the case of the qubit, the vectors of a starting frame of the form

|vk〉=
√

2
m

(

cos 2kπ
m

sin 2kπ
m

)

, (75)

where k ∈ {0, 1, 2, ..., m−1}, can be arranged in a natural way in the sequence |v0〉,
|v1〉,...,|vm−1〉, and the set {0, 1, ..., m−1}×{0, 1, ..., m−1} regarded as a natural phase
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Table 1. Dependence on m of Nm and Cm in two particular cases.

Qubit state m Nm Cm Qubit state m Nm Cm

( 1
√

2

− i
√

2

)

3

4

5

6

7

8

9

10

15

20

30

40

50

60

70

80

90

100

0.3035

0.1875

0.2595

0.2388

0.2490

0.2263

0.2449

0.2387

0.2409

0.2367

0.2387

0.2382

0.2387

0.2385

0.2387

0.2386

0.2387

0.2386

0.6439

0.5303

0.7514

0.7618

0.7955

0.7651

0.8194

0.8221

0.8523

0.8575

0.8759

0.8807

0.8858

0.8877

0.8900

0.8910

0.8923

0.8929

(

1
3

i
3

− i
3

2
3

)

3

4

5

6

7

8

9

10

15

20

30

40

50

60

70

80

90

100

0.2769

0.1250

0.1921

0.1840

0.1770

0.1587

0.1713

0.1686

0.1654

0.1618

0.1631

0.1623

0.1627

0.1624

0.1626

0.1624

0.1625

0.1624

0.5078

0.4124

0.6091

0.6257

0.6569

0.6523

0.6822

0.6798

0.7144

0.7239

0.7380

0.7443

0.7483

0.7507

0.7525

0.7538

0.7548

0.7556

space. This allows an intuitive representation of a state. Since the tensor product of

two tight frames is a tight frame, some significant intuitive representations can be ob-

tained for a composite system of N qubits by using the equal-coordinate slice (similar to

equal-angle slice used in [17, 18, 19, 20]). In figure 1, we represent the Wigner functions

Wm corresponding to three quantum states in the representations defined by the regular

tight frame (75) with m=30 and m=100.

If the dimension of the Hilbert space H is greater than 2, then the vectors |vk〉 are

distributed on a sphere in H, and the order in the sequence |v0〉, |v1〉,...,|vr〉 is chosen

arbitrary. So, we can not use our description {0, 1, ..., r}×{0, 1, ..., r} of the phase space

for direct intuitive representations.

4.3. A frame version of volume of the negative part of Wigner function

The frame version of the volume of the negative part of Wigner function [23] can be
defined as

Nm=

∑

j,k

(|Wm(j, k)| −Wm(j, k))

2m2 max
j,k

|Wm(j, k)| . (76)

By taking into consideration the behaviour of frame representation for m→ ∞ (see

Fig. 1 and Table 1), we can define the volume of the negative part of Wigner function

in a new way, namely as

N = lim
m→∞

Nm. (77)
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This new parameter does not depend on the particular frame representation (75) we

choose. Two examples are presented in Table 1.

4.4. Coherence of a state with respect to a frame

In the case of a frame representation, for any quantum state ̺, we have
r
∑

j=0

|vj〉〈vj|=IH ⇒
r
∑

j=0

Wjj=IH ⇒
r
∑

j=0

W̺(j, j)=1. (78)

The parameter

Cm=
1

m

∑

j 6=k

|W̺(j, k)| (79)

may contain some information concerning the coherence of a qubit quantum state ̺.

The frame coherence of a qubit might be defined as the limit

C= lim
m→∞

Cm, (80)

which seems to exist for any state ̺ (see Table 1), and does not depend on the particular

frame representation (75) we choose.

4.5. Qubit regarded as an orthogonal projection of qutrit

The use of the triangular frame representation of qubit makes more transparent the

relation qubit-qutrit. The tight frame

|u0〉=





√

2
3

0



 , |u1〉=
(

− 1√
6
1√
2

)

, |u2〉=
(

− 1√
6

− 1√
2

)

, (81)

allows us to identify the Hilbert space C2 of qubit with the subspace

S={ α0|w0〉+α1|w1〉 | α0, α1∈C } (82)

of the Hilbert space C
3 of qutrit by using the linear isometry (see (9))

C
2 −→ S : α0|e0〉+α1|e1〉 7→ α0|w0〉+α1|w1〉, (83)

where

|e0〉=
(

1

0

)

, |e1〉=
(

0

1

)

, |w0〉=











√

2
3

− 1√
6

− 1√
6











, |w1〉=









0
1√
2

− 1√
2









. (84)

Since {|w0〉, |w1〉} is an orthonormal basis of S, the orthogonal projector corresponding
to S is P : C3 −→ S,

P = |w0〉〈w0|+|w1〉〈w1|=









2
3

−1
3

−1
3

−1
3

2
3

−1
3

−1
3

−1
3

2
3









. (85)
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The orthogonal projector

A(C3) −→ A(S)≡A(C2) : A 7→ PAP (86)

is a positive map

A ≥ 0 ⇒ 〈x, PAPx〉=〈Px,APx〉≥0.

For any A∈A(C3), the matrix of PAP in the basis {|e0〉, |e1〉} is A′=LPAPLT , where

L=





√

2
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2



 (87)

satisfies LLT = IC2 and LTL = P . The tight frame (63) of A(C2) is the orthogonal
projection of the orthonormal basis

E00=







1 0 0

0 0 0

0 0 0






, E01=







0 1
√

2
0

1
√

2
0 0

0 0 0






, E02=







0 0 1
√

2

0 0 0
1
√

2
0 0






,

E10=







0 i
√

2
0

− i
√

2
0 0

0 0 0






, E11=







0 0 0

0 1 0

0 0 0






, E12=







0 0 0

0 0 1
√

2

0 1
√

2
0






,

E20=







0 0 i
√

2

0 0 0

− i
√

2
0 0






, E21=







0 0 0

0 0 i
√

2

0 − i
√

2
0






, E22=







0 0 0

0 0 0

0 0 1






,

(88)

of A(C3), that is

Wjk=LPEjkPL
T , for any i, j∈{0, 1, 2}. (89)

The mapA(C3)→ A(C2) : A 7→ A′=LPAPLT from the qutrit to qubit is surjective

but not injective. Since Wjk=LPEjkPL
T ⇒ LTWjkL=PEjkP , we get

WA′(j, k)=Tr(WjkA
′)=Tr(WjkLPAPL

T )=Tr(LTWjkLPAP )

=Tr(PEjkPPAP )=Tr(EjkPAP ),

that is , the Wigner function corresponding to A′ is

WA′(j, k)=Tr(EjkPAP ). (90)

4.6. Gaussian states of qubit

In order to simplify the notations, in this section, we consider only tight frames {Wjk}
obtained by starting from frames (75) with odd m=2ℓ+1. Instead of the phase space

{0, 1, ..., m−1}×{0, 1, ..., m−1} we use {−ℓ, ℓ+1, ..., ℓ−1, ℓ}×{−ℓ, ℓ+1, ..., ℓ−1, ℓ}, and
define

Wjk=Wj(modm) k(modm) (91)

for any j, k∈{−ℓ, ℓ+1, ..., ℓ−1, ℓ}. A function of the form (see Fig.2)

fκ : {−ℓ, ℓ+1, ..., ℓ−1, ℓ}×{−ℓ, ℓ+1, ..., ℓ−1, ℓ}→R, fκ(j, k)=e−κ(j2+k2),(92)
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Figure 2. The discrete Gaussian function f1/2(j, k)=e−(j2+k2)/2 in the cases m=7,

m=11 and m=21.

Table 2. Eigenvalues of ̺κ in certain particular cases.

κ m Eigenvalues of ̺κ κ m Eigenvalues of ̺κ

1
2

3

5

7

9

11

21

0.935639

0.865239

0.949816

0.977093

0.987222

0.997449

0.0643606

0.134761

0.0501843

0.0229066

0.0127781

0.00250995

1

3

5

7

9

11

21

0.928317

0.949233

0.976296

0.986562

0.991348

0.997774

0.0716833

0.0507668

0.023707

0.0134375

0.0086524

0.00222598

with κ∈(0,∞), is a discrete version of the Gaussian function gκ :R×R→R, gκ(x, y)=

e−κ(x2+y2).

A quantum state of the form

̺κ :C
2→C

2, ̺κ =

ℓ
∑

j,k=−ℓ

e−κ(j2+k2)Wjk

Tr(
ℓ
∑

j,k=−ℓ

e−κ(j2+k2)Wjk)

(93)

can be regarded as a Gaussian state of the qubit. We do not know which restrictions ℓ

and κ have to satisfy in order to have ̺κ ≥ 0. In the investigated cases (see Table 2),

the operators ̺κ defined in this way are density operators. We think that the Gaussian

states of the qubit may have some interesting properties. Our intention is to show that

the frame representation offers the possibility to define new parameters describing the

quantum states as well as some ”special” states.

4.7. Error correction of measurements

The redundant information introduced by passing from orthogonal bases to tight frames

may allow us to eliminate certain errors, to increase the precision of measurements [7].

For example, in the odd dimensional case, if ̺ is a quantum state, Wjk are the operators
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describing the qudit in a frame representation and Π(j, k) are the operators (12), then

it is known [24] that the error

‖ ̺−
r
∑

j,k=0

(Tr(̺Wjk)+λjk)Wjk ‖ (94)

is generally smaller than the error

‖ ̺−
s
∑

j,k=−s

(
1

d
Tr(̺Π(j, k))+µjk) Π(j, k) ‖ (95)

for any random numbers λjk and µjk lying in a small neighborhood (−ε, ε) of 0. In order

to increase the precision of a measurement, we have to start from a frame containing

more vectors.

4.8. Error detection and correction

Only a part of the operatorsWjk used in a frame representation are linearly independent.

For example, in the case of the triangular frame representation of qubits, any five of

the eight operators Wjk from (63) are linearly dependent. This means that, for any five

of the eight values W̺(j, k), a certain linear combination must be null. If only a small

part of W̺(j, k) contain errors, these errors can be detected and corrected by using the
8!
3! 5!

=56 restrictions the values of the Wigner function of any state ̺ must satisfy.

5. Concluding remarks

The method to obtain a tight frame {Wjk} of A(H) by starting from a tight frame {|vj〉}
of H seems (to our knowledge) to be new. Based on it, we have obtained some explicit

representations for qubits and qutrits. In the case of coherent states, the representation

of a pure state as a linear combination of coherent states is not unique, but there

exists a standard representation based on the resolution of the identity very useful in

applications. In a very similar way, the representation of a quantum state or observable

as a linear combination of Wjk is not unique, but there exists a representation based on

the resolution of the identity. By using this standard representation, we define a more

general version of the discrete Wigner function. We think that the presented approach

may be useful in the investigation of the properties of the quantum systems involving

qubits and qutrits.
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