DIFFERENTIAL EQUATIONS - Solved Exercises 1

Nicolae Cotfas, version 19 June 2024 (for future updates see https://unibuc.ro/user/nicolae.cotfas/)

EXERCISES

Exercise 1

Find the general solution of the equations:

$$\boxed{1a} \quad y'' - 6y' + 8y = 0.$$

$$\boxed{1b} \quad y'' - 6y' + 9y = 0.$$

$$\boxed{1c} \quad y'' - 6y' + 10y = 0.$$

Exercise 2

Solve the equation

$$\boxed{2} \quad x^2 y'' + y = 0.$$

Exercise 3

Solve by two methods

$$3 | (4xy + y)dx + (2x^2 + x)dy = 0.$$

Exercise 4

Solve by two methods

$$\begin{cases}
y_1' = 3y_2 \\
y_2' = 3y_1.
\end{cases}$$

Exercise 5

Solve the system of equations

$$\begin{cases} y_1' = y_1 - 2y_2 \\ y_2' = 2y_1 + y_2. \end{cases}$$

Exercise 6

Solve the system of equations

SOME DEFINITIONS, THEOREMS and REMARKS

T1 Theorem (Linear equations with constant coefficients).

The space of all the real solutions of $a_0y^{(n)} + a_1y^{(n-1)} + \cdots + a_{n-1}y' + a_ny = 0$ where $a_0,...,a_n \in \mathbb{R}$, is a real vector space of dimension n.

R1 Remark.

In order to describe the space of all the real solutions of (1), it is sufficient to find some particular solutions y_1, y_2, \dots, y_n forming a basis in the space of solutions. The general solution can be written as

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x)$$

where $C_1, C_2, ..., C_n$ are arbitrary real constants.

D1 **Definition**. The polynomial

 $P(\lambda) = a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n$

is called the *characteristic polynomial* of the equation (1).

T2 **Theorem** (Particular solutions).

$$y(x) = e^{\lambda x}$$
 is a solution of (1) $\Leftrightarrow P(\lambda) = 0$

D2 | **Definition** (Complex exponential)

$$e^{(\alpha+\beta i)x} = e^{\alpha x} \cos \beta x + i e^{\alpha x} \sin \beta x$$

| T3 | **Theorem**. General solution of $a_0y'' + a_1y' + a_2y = 0$.

 $P(\lambda) = a_0 \lambda^2 + a_1 \lambda + a_2$ has the roots $\lambda_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_0 a_2}}{2a_0}$. General solution:

•
$$\lambda_1 \neq \lambda_2 \in \mathbb{R} \quad \Rightarrow \quad y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

•
$$\lambda_1 = \lambda_2 = \lambda$$
 $\Rightarrow y(x) = C_1 e^{\lambda x} + C_2 x e^{\lambda x}$

• $\lambda_1 = \lambda_2 = \lambda$ $\Rightarrow y(x) = C_1 e^{\lambda x} + C_2 x e^{\lambda x}$. • $\lambda_{1,2} = \alpha \pm \beta i$ $\Rightarrow y(x) = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$.

T4 **Theorem** (Euler's equation).

$$a_0x^ny^{(n)} + \dots + a_{n-1}xy' + a_ny = 0$$
 change linear equation with $x = e^{t}$ constant coefficients

T5 Theorem (Primitives of a continuous function)

Primitives of
$$f$$
 are:
$$F:(a,b) \to \mathbb{R}$$
continuous
$$F(x) = \int_{x_0}^x f(t) dt + C$$

$$x_0 \in (a,b) \text{ is fixed}$$
We have that
$$\frac{d}{f}$$
that
$$\frac{d}{dx} \left(\int_x^x f(t) dt + C \int_x^x f(t) dt \right)$$
for all

We have
$$F'(x) = f(x)$$
, that is
$$\frac{\frac{d}{dx} \left(\int_{x_0}^x f(t) dt \right) = f(x)}{\text{for any } x \in (a, b).}$$

T6 | Theorem (Separable equations).

The solution
$$y(x)$$
 of
$$y' = f(x) g(y)$$
 is defined by
$$\int_{y_0}^{y} \frac{1}{g(u)} du = \int_{x_0}^{x} f(t) dt + C$$
$$x_0, y_0 \text{ constants, } q(y_0) \neq 0.$$

R2 Remark

$$y' = f(x,y)$$
 can also be written as $\frac{dy}{dx} = f(x,y)$ or $f(x,y)dx - dy = 0$.

D3 Definition (Symmetric equations).

 $P(\varphi(t), \psi(t))\varphi'(t) + Q(\varphi(t), \psi(t))\psi'(t) = 0$, for any t.

$T7 \mid$ **Theorem** (Exact equations).

$$\begin{array}{c|c} \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \\ \text{in a simply} \\ \text{connected} \\ \text{domain } D \end{array} \Rightarrow \begin{array}{c} \text{The function} \quad F \colon D \to \mathbb{R}, \\ F(x,y) = \int_{\gamma} P dx + Q dy, \\ \text{where } \gamma \colon [a,b] \to D \text{ is an arbitrary path} \\ \text{connecting a fixed point } (x_0,y_0) \text{ with } (x,y), \\ \text{defines a function satisfying the relation} \\ P(x,y) dx + Q(x,y) dy = dF \end{array}$$

R3 Remark.

In D, the equation P(x,y)dx+Q(x,y)dy=0 can be written as dF = 0, and its solution is described implicitly by F(x,y) = C.

Remark. By denoting $Y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}$, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $\int y_1' = a_{11}y_1 + a_{12}y_2$ can be written as Y' = AY $y_2' = a_{21}y_1 + a_{22}y_2$

T8 | Theorem.

The space of all the real solutions of Y' = AY, where $a_{ij} \in \mathbb{R}$, is a real vector space of dimension 2.

$D4 \mid \mathbf{Definition}$. The polynomial

$$P(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21}$$
 is called the *characteristic polynomial* of $Y' = AY$.

Theorem (Particular non-null solutions). $(P(\lambda) = 0)$ and

$$Y(x) = \begin{pmatrix} p \\ q \end{pmatrix} e^{\lambda x} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ satisfies } Y' = AY \iff \begin{cases} P(\lambda) = 0 & \text{and} \\ A\begin{pmatrix} p \\ q \end{pmatrix} = \lambda \begin{pmatrix} p \\ q \end{pmatrix}.$$

T10 **Theorem.** If λ_1 and λ_2 are the solutions of $P(\lambda)=0$, then:

$$\begin{array}{l}
\bullet \quad \lambda_1, \ \lambda_2 \in \mathbb{R} \\
A \begin{pmatrix} p_j \\ q_j \end{pmatrix} = \lambda_j \begin{pmatrix} p_j \\ q_j \end{pmatrix} \Rightarrow Y(x) = C_1 \begin{pmatrix} p_1 \\ q_1 \end{pmatrix} e^{\lambda_1 x} + C_2 \begin{pmatrix} p_2 \\ q_2 \end{pmatrix} e^{\lambda_2 x}.$$
linearly independent

$$\begin{array}{ccc}
\bullet & \lambda_{1,2} = \alpha \pm \beta \mathrm{i} \notin \mathbb{R} \\
A \begin{pmatrix} p \\ q \end{pmatrix} = (\alpha + \beta \mathrm{i}) \begin{pmatrix} p \\ q \end{pmatrix} \Rightarrow & Y(x) = C_1 \, \mathfrak{Re} \left\{ \begin{pmatrix} p \\ q \end{pmatrix} \mathrm{e}^{(\alpha + \beta \mathrm{i})x} \right\} \\
& + C_2 \, \mathfrak{Im} \left\{ \begin{pmatrix} p \\ q \end{pmatrix} \mathrm{e}^{(\alpha + \beta \mathrm{i})x} \right\}.
\end{array}$$

$$\begin{array}{ll} \bullet & \lambda_1 = \lambda_2 = \lambda \\ \dim \left\{ \begin{pmatrix} p \\ q \end{pmatrix} \middle| A \begin{pmatrix} p \\ q \end{pmatrix} = \lambda \begin{pmatrix} p \\ q \end{pmatrix} \right\} = 1 \end{array} \right\} \Rightarrow \begin{array}{ll} \text{General solution can be} \\ \text{found of the form} \\ Y(x) = \begin{pmatrix} c_1 + c_2 x \\ c_3 + c_4 x \end{pmatrix} e^{\lambda x}$$

SOLUTIONS

Exercise 1. We use T2 and T3.

$$\begin{array}{ccc} \boxed{1a} & \lambda^2 - 6\lambda + 8 = 0 & \Rightarrow & \lambda_1 = 2, \ \lambda_2 = 4. \\ & T3 & \Rightarrow & y(x) = C_1 \, \mathrm{e}^{2x} + C_2 \, \mathrm{e}^{4x}. \end{array}$$

$$\begin{array}{c|c}
\hline 1b & \lambda^2 - 6\lambda + 9 = 0 \Rightarrow \lambda_1 = \lambda_2 = 3. \\
T3 & \Rightarrow y(x) = C_1 e^{3x} + C_2 x e^{3x}.
\end{array}$$

$$\begin{array}{|c|c|c|} \hline 1c & \lambda^2 - 6\lambda + 10 = 0 & \Rightarrow & \lambda_{1,2} = 3 \pm \mathrm{i}. \\ & T3 & \Rightarrow & y(x) = C_1 \, \mathrm{e}^{3x} \cos x + C_2 \, \mathrm{e}^{3x} \sin x. \end{array}$$

Exercise 2 We use T4, T2 and T3.

We use the change of variables:

$$\begin{array}{ll} x \mapsto t, & x = \mathrm{e}^t, & y(x) = z(\ln x), \\ y \mapsto z, & t = \ln x, & z(t) = y(\mathrm{e}^t). \end{array}$$
 Since $y'(x) = z'(\ln x)(\ln x)' = \frac{1}{x}z'(\ln x),$

$$y''(x) = -\frac{1}{x^2} z'(\ln x) + \frac{1}{x^2} z''(\ln x),$$

in the new variables, the equation becomes $\mathrm{e}^{2t}\left(-\tfrac{1}{\mathrm{e}^{2t}}\,z'\!+\!\tfrac{1}{\mathrm{e}^{2t}}\,z''\right)\!+\!z\!=\!0,$

$$e^{2t} \left(-\frac{1}{e^{2t}} z' + \frac{1}{e^{2t}} z'' \right) + z = 0$$

that is

$$z''-z'+z=0.$$

Because
$$\lambda^2 - \lambda + 1 = 0 \Rightarrow \lambda_{1,2} = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$
,

$$T3 \Rightarrow z(t) = C_1 e^{\frac{t}{2}} \cos \frac{t\sqrt{3}}{2} + C_2 e^{\frac{t}{2}} \sin \frac{t\sqrt{3}}{2}$$
, and consequently,

$$y(x) = C_1 e^{\frac{\ln x}{2}} \cos(\frac{\sqrt{3}}{2} \ln x) + C_2 e^{\frac{\ln x}{2}} \sin(\frac{\sqrt{3}}{2} \ln x)$$

= $C_1 \sqrt{x} \cos(\frac{\sqrt{3}}{2} \ln x) + C_2 \sqrt{x} \sin(\frac{\sqrt{3}}{2} \ln x).$
= $C_1 \sqrt{x} \cos(\sqrt{3} \ln \sqrt{x}) + C_2 \sqrt{x} \sin(\sqrt{3} \ln \sqrt{x}).$

Exercise 3

$3a \mid Method 1$. The equation is exact in $D = \mathbb{R}^2$:

$$\frac{\partial (4xy+y)}{\partial y} = 4x + 1 = \frac{\partial (2x^2+x)}{\partial x}.$$

By using T7 and the path

$$\gamma: [0,1] \to \mathbb{R}^2, \quad \gamma(t) = (xt, yt)$$

connecting (0,0) with (x,y), we get

$$\begin{split} F(x,y) &= \int\limits_{0}^{\gamma} (4xy+y)dx + (2x^2+x)dy \\ &= \int\limits_{0}^{\gamma} \left[(4xyt^2+yt)x + (2x^2t^2+xt)y \right]dt \\ &= \left(4x^2y\frac{t^3}{3} + xy\frac{t^2}{2} + 2x^2y\frac{t^3}{3} + xy\frac{t^2}{2} \right) \Big|_{t=0}^{t=1} \\ &= 2x^2y + xy. \end{split}$$

The equation can be written as (see R3)

$$d(2x^2y + xy) = 0,$$

and its solution, described by

$$2x^2y + xy = C$$
,

is
$$y:(a,b)\to\mathbb{R}, \quad y(x)=\frac{C}{2x^2+x},$$

where (a,b) is an arbitrary interval not containing 0 or $-\frac{1}{2}$.

$3b \mid Method \ 2$. We use T6. The equation, written as $y' = -\frac{4x+1}{2x^2+x}y,$

is a separable equation. Its solution is described by $\int \frac{dy}{y} = -\int \frac{4x+1}{2x^2+x} dx + \ln|C|,$

where $\int \frac{dy}{y} = a$ primitive of $y \mapsto \frac{1}{y}$,

$$\int \frac{4x+1}{2x^2+x} dx = a$$
 primitive of $x \mapsto \frac{4x+1}{2x^2+x}$,

that is, by the relation

$$\ln|y| = -\ln|2x^2 + x| + \ln|C|,$$

For $x \notin \{0, -\frac{1}{2}\}$, this relation can be written as

$$|y(x)| = \left|\frac{C}{2x^2+x}\right|$$
 or $y(x) = \frac{\pm C}{2x^2+x}$.

Exercise 4

4a Method 1. We have

$$\begin{cases} y_1' = 3y_2 \\ y_2' = 3y_1. \end{cases} \Rightarrow \begin{cases} y_1'' = 3y_2' \\ y_2' = 3y_1. \end{cases} \Rightarrow y_1'' - 9y_1 == 0.$$

$$T3 \Rightarrow y_1(x) = C_1 e^{3x} + C_2 e^{-3x}.$$

$$y_1' = 3y_2 \Rightarrow y_2(x) = \frac{1}{3}y_1'(x) = C_1 e^{3x} - C_2 e^{-3x}.$$

4b Method 2. The system can be written as
$$Y' = AY$$
, where. $Y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}, A = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix},$

In this case,

$$\begin{vmatrix} 0 - \lambda & 3 \\ 3 & 0 - \lambda \end{vmatrix} = 0 \implies \lambda_{1,2} = \pm 3 \text{ and}$$

$$\begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = 3 \begin{pmatrix} p \\ q \end{pmatrix} \implies \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p \\ p \end{pmatrix},$$

$$\begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = -3 \begin{pmatrix} p \\ q \end{pmatrix} \implies \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p \\ -p \end{pmatrix}.$$

$$\begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3x} + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-3x},$$

that is

$$y_1(x) = C_1 e^{3x} + C_2 e^{-3x},$$

 $y_2(x) = C_1 e^{3x} - C_2 e^{-3x}.$

Exercise 5. The system can be written as Y' = AY, where.

$$Y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}, A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix},$$

In this case,

$$\begin{vmatrix} 1-\lambda & -2 \\ 2 & 1-\lambda \end{vmatrix} = 0 \implies \lambda_{1,2} = 1 \pm 2i \text{ and}$$

$$\begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = (1+2i) \begin{pmatrix} p \\ q \end{pmatrix} \implies \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p \\ -pi \end{pmatrix}.$$

By choosing the eigenvector $\begin{pmatrix} 1 \\ -i \end{pmatrix}$, we get (see D2 and T10)

$$\begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} = C_1 \Re \left\{ \begin{pmatrix} 1 \\ -\mathrm{i} \end{pmatrix} e^{(1+2\mathrm{i})x} \right\} + C_2 \Im \left\{ \begin{pmatrix} 1 \\ -\mathrm{i} \end{pmatrix} e^{(1+2\mathrm{i})x} \right\}$$

$$= C_1 \begin{pmatrix} e^x \cos 2x \\ e^x \sin 2x \end{pmatrix} + C_2 \begin{pmatrix} e^x \sin 2x \\ -e^x \cos 2x \end{pmatrix}.$$

that is

$$y_1(x) = C_1 e^x \cos 2x + C_2 e^x \sin 2x,$$

 $y_2(x) = C_1 e^x \sin 2x - C_2 e^x \cos 2x.$

Exercise 6. The system can be written as Y' = AY, where.

$$Y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}, A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix},$$

We use T10. In this case,

$$\begin{vmatrix} 3-\lambda & 1 \\ 0 & 3-\lambda \end{vmatrix} = 0 \implies \lambda_1 = \lambda_2 = 3 \text{ and}$$
$$\dim \left\{ \begin{pmatrix} p \\ q \end{pmatrix} \mid A \begin{pmatrix} p \\ q \end{pmatrix} = 3 \begin{pmatrix} p \\ q \end{pmatrix} \right\} = \dim \left\{ \begin{pmatrix} p \\ 0 \end{pmatrix} \mid p \in \mathbb{R} \right\} = 1.$$

 $T10 \Rightarrow$ the general solution can be found of the form

$$Y(x) = \begin{pmatrix} c_1 + c_2 x \\ c_3 + c_4 x \end{pmatrix} e^{3x}, \text{ that is } \begin{aligned} y_1(x) &= (c_1 + c_2 x) e^{3x}, \\ y_2(x) &= (c_3 + c_4 x) e^{3x}. \end{aligned}$$

By direct substitution into the system, we get $c_2 = c_3$, $c_4 = 0$, and consequently

$$\begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} = \begin{pmatrix} c_1 + c_2 x \\ c_2 \end{pmatrix} e^{3x} = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{3x} + c_2 \begin{pmatrix} x \\ 1 \end{pmatrix} e^{3x},$$

that is

$$y_1(x) = C_1 e^{3x} + C_2 x e^{3x},$$

 $y_2(x) = C_2 e^{3x}.$