An overview on **COMPLEX ANALYSIS**

Nicolae Cotfas, version 27 Apr 2020 (for future updates see https://unibuc.ro/user/nicolae.cotfas/)

$\underline{\mathbf{COMPLEX\ NUMBERS}}\quad \mathbb{C} = \{z = x + y\mathbf{i} \mid x, y \in \mathbb{R}\}\$

Definition. For z = x + y

For
$$z = x + yi$$
 $\mathbb{R} \subset \mathbb{C}$

 $x \equiv x + 0i$

 $\mathfrak{Re}z \stackrel{\text{def}}{=} x$ $\mathfrak{Im}z \stackrel{\text{def}}{=} y$ $\bar{z} \stackrel{\text{def}}{=} x - y \mathbf{i}$ $|z| \stackrel{\text{def}}{=} \sqrt{x^2 + y^2}$

real part of zimaginary part of zcomplex conjugate of zmodulus of z

- Identification $\mathbb{C} \equiv \mathbb{R}^2$ (as normed spaces and metric spaces).
- $\mathbb{C} \longrightarrow \mathbb{R}^2 \\
 x + y \, \mathbf{i} \mapsto (x, y)$

is linear bijective ar

and
$$|x+yi| = \sqrt{x^2+y^2} = ||(x,y)||$$

- Distance in \mathbb{C}
- $|z_1-z_2|$ = distance between z_1 and z_2 |z| = distance between z and 0

 $B_r(z_0) = \{z \mid |z - z_0| < r \}$ open ball of center z_0 and radius \overline{r} .

 $D \subset \mathbb{C}$ is $\overset{\text{def}}{\Longleftrightarrow}$ for any $z \in D$ such that $B_r(z) \subset D$.

- Convergence to ∞ . $\lim_{n\to\infty} z_n = \infty \iff \lim_{n\to\infty} |z_n| = \infty$.
- \blacksquare A fundamental inequality.

For any z = x + yi, we have

$$\begin{vmatrix} |x| \\ |y| \end{vmatrix} \le |x+yi| \le |x|+|y|$$

Convergence of a sequence

$$\lim_{n \to \infty} (x_n + y_n \mathbf{i}) = \alpha + \beta \mathbf{i} \iff \begin{cases} \lim_{n \to \infty} x_n = \alpha \\ \lim_{n \to \infty} y_n = \beta \end{cases}$$

- $\begin{aligned} & \mathbf{I} |z| > 1 \implies \lim_{n \to \infty} z^n = \infty. & |z| < 1 \implies \lim_{n \to \infty} z^n = 0. \\ & |z| < 1 \implies 1 + z + z^2 + \dots = \lim_{n \to \infty} (1 + z + z^2 + \dots + z^n) = \frac{1}{1 z}. \end{aligned}$
- Euler's formula.
- 1 1

Argument of a complex number.

For $z \neq 0$ $\arg z \in (-\pi, \pi]$ $z = |z| (\cos(\arg z) + i \sin(\arg z))$ there exists such that $|z| = |z| e^{i \arg z}$

COMPLEX FUNCTIONS (Notation: $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$)

 $oxed{Complex function} = a complex-valued function.$

Examples: $f: \mathbb{C} \longrightarrow \mathbb{C}$, $f(z) = z^3 = z z z$, $f: \mathbb{C}^* \longrightarrow \mathbb{C}$, $f(z) = \frac{1}{z}$, $\frac{1}{x+y\mathbf{i}} = \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}\mathbf{i}$ $f: \mathbb{C} \longrightarrow \mathbb{C}$, $f(z) = \mathbf{e}^z$, $\mathbf{e}^{x+y\mathbf{i}} = \mathbf{e}^x \cos y + \mathbf{i} \mathbf{e}^x \sin y$, $f: \mathbb{C} \longrightarrow \mathbb{C}$, $f(z) = \cos z \stackrel{\text{def}}{=} \frac{\mathbf{e}^{\mathbf{i}z} + \mathbf{e}^{-\mathbf{i}z}}{2}$, $f: \mathbb{C} \longrightarrow \mathbb{C}$, $f(z) = \sin z \stackrel{\text{def}}{=} \frac{\mathbf{e}^{\mathbf{i}z} - \mathbf{e}^{-\mathbf{i}z}}{2\mathbf{i}}$.

<u>Definition</u>. Let $D \subseteq \mathbb{C}$ be an open set, and $z_0 \in D$.

A function $f:D \longrightarrow \mathbb{C}$ is **complex-differentiable** (\mathbb{C} -differentiable) at z_0

there exists and is finite $f'(z_0) \stackrel{\text{def}}{=} \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$

Theorem (Cauchy-Riemann).

A function $f: D \longrightarrow \mathbb{C}$ f(x+yi) = u(x,y) + v(x,y)idefined on an open set $D \subseteq \mathbb{C} = \mathbb{R}^2$ is \mathbb{C} -differentiable at $z_0 \in D$ $u, v: D \longrightarrow \mathbb{R} \text{ are differentiable at } (x_0, y_0)$ and satisfy the relations $\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0),$ $\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$

If these conditions are satisfied, then $f'(x_0+y_0i) = \frac{\partial u}{\partial x}(x_0,y_0) + \frac{\partial v}{\partial x}(x_0,y_0)i$

Definition.

 $f: D \to \mathbb{C}$ defined on an open set D is called \mathbb{C} -differentiable if (or holomorphic function)

f is \mathbb{C} -differentiable at any point $z_0 \in D$.

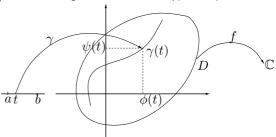
Examples: $(z^n)' = nz^{n-1}$ $(e^z)' = e^z$ $(\sin z)' = \cos z$

COMPLEX LINE INTEGRAL

Let $D \subseteq \mathbb{C}$ be an open set,

 $f:D\longrightarrow \mathbb{C}$ be a continuous function,

 $\gamma : [a, b] \longrightarrow D$ be a path of class C^1 (γ and γ' are continuous).



Definition.

The complex line integral of f along γ

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Definition can be extended to the case when γ is piecewise of class C^1 . Definition does not depend on the parametrization of γ we use.

 $g: D \to \mathbb{C}$ is a primitive of f (that is g' = f) $\Rightarrow \boxed{\int_{\gamma} f(z) dz = g(\gamma(b)) - g(\gamma(a))}$

- If $f: D \to \mathbb{C}$ admits a primitive and γ is closed, then $\int_{\gamma} f(z) dz = 0$.
- Definition.

Two paths $\gamma_0, \gamma_1: [a, b] \to D$ with the same endpoints are **homotopic** in D if one of them can be continuously deformed into the other inside D. Path **homotopic to zero** in D = path homotopic to a constant path.

Theorem (Cauchy). For an open set D:

 $\begin{array}{|c|c|}\hline f:D \longrightarrow \mathbb{C} \text{ is a holomorphic function} \\ \gamma:[a,b] \longrightarrow D \text{ is a path homotopic to zero in } D \end{array} \Rightarrow \begin{array}{|c|c|}\hline \int_{\gamma} f(z) \, dz = 0 \end{array}$

. Theorem For an open set D:

 $\begin{array}{c} f\!:\!D\!\longrightarrow\!\mathbb{C} \text{ is a holomorphic function} \\ \gamma_0,\gamma_1 \text{ are paths homotopic in } D \end{array} \Rightarrow$

 $\Rightarrow \int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$

Definition. Let D be an open set and $f:D\longrightarrow \mathbb{C}$ holomorphic.

 $z_0\!\in\!\mathbb{C}\backslash D \text{ is } \begin{array}{ll} \text{an } isolated \\ singular \ point \end{array} \text{ if } \begin{array}{ll} \text{there exists } r\!>\!0 \text{ such that} \\ \big\{\,z\mid\,0\!<\!|z\!-\!z_0|\!<\!r\,\big\}\!\subset D. \end{array}$

 $z_0\!\in\! D \ \ \text{is} \quad \underset{multiplicity}{\text{a zero of}} \ \ _k \ \ \text{if} \quad f(z_0)\!=\!f'(z_0)\!=\!\dots=\!f^{(k-1)}(z_0)\!=\!0$

 $z_0\!\in\!\mathbb{C}\backslash D \text{ is } \begin{array}{ll} \text{a pole of}\\ \text{order } k \text{ of } f \end{array} \text{if } z_0 \text{ is a zero of multiplicity } k \text{ of } \frac{1}{f}.$

Theorem. Let D be an open set and $f:D\longrightarrow \mathbb{C}$ holomorphic.

 z_0 is a an isolated singular point and $\{z \mid 0 < |z - z_0| < r\} \subset D$

there exists a unique Laurent series such that $f(z) = \sum_{n=-\infty}^{\infty} a_n \ (z-z_0)^n,$ for z satisfying $0 < |z-z_0| < r$.

The number $\mathbf{Res}_{z_0} f \stackrel{\text{def}}{=} a_{-1}$ is the **residue** of f in z_0 .

- z_0 pole of order $k \Rightarrow \begin{cases} f(z) = \frac{a_{-k}}{(z-z_0)^k} + \dots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \dots \\ \text{and } \mathbf{Res}_{z_0} f = \frac{1}{(k-1)!} \lim_{z \to z_0} \left((z-z_0)^k f(z) \right)^{(k-1)} \end{cases}$
- **Definition**. (*Index* of a point z_0 with respect to a path).

For a closed path γ not passing through z_0 , $n(z_0, \gamma) \stackrel{\text{def}}{=} \frac{1}{2\pi \mathrm{i}} \int_{\gamma} \frac{1}{z-z_0} dz$ shows how many turns around z_0 , γ makes.

Theorem of Residues. For an open set $D \subseteq \mathbb{C}$:

 $f: D \longrightarrow \mathbb{C}$ is an holomorphic function S is the set of isolated singular points $\gamma: [a,b] \to D$ homotopic to zero in $D \cup S$

$$\Rightarrow \begin{cases} \int f(z)dz = \\ \gamma = 2\pi i \sum_{z \in S} n(z, \gamma) \mathbf{Res}_z f. \end{cases}$$