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In the case of a quantum system with finite-dimensional Hilbert space, the discrete versions of
the position and momentum do not satisfy the discrete version of the usual commutation relation.
However, if the dimension of the Hilbert space is large enough, then this relation is approximately
satisfied by a significant part of the pure states. We show that among these states there is a Fourier
invariant family of discrete-variable Gaussian states depending on a continuous parameter. These
states behave similar to their continuous-variable counterpart, and may have useful applications.

The quantum systems with finite-dimensional Hilbert
space play an important role in the investigation of quan-
tum mechanics foundations, in Quantum Information,
and in other applications. The mathematical description
of these discrete-variable systems is obtained by follow-
ing, as much as possible, the analogy with the continuous-
variable quantum systems.

In certain cases, the discrete-variable versions have
properties very similar to those concerning the contin-
uous systems, but this does not happen in all the cases.
Here, we continue the investigation of the discrete ver-
sion of the canonical commutation relation, started in
[1]. Among the new results, there are the formulas (26),
(28), (30), (32), (36), Fig. 2 and Fig. 3.

A spinless particle with mass, in one dimension, is usu-
ally described by using the Hilbert space

L2(R)=
{
Ψ:R→C

∣∣∣∣ ∫ ∞

−∞
|Ψ(q)|2 dq<∞

}
(1)

of all the square integrable functions with

⟨Φ,Ψ⟩=
∫ ∞

−∞
Φ(q)Ψ(q) dq. (2)

In order to have a simple analogy, we shall consider only
the case of a discrete-variable quantum system described
by an odd-dimensional (d = 2s+1) Hilbert space H re-
garded as a space of functions, namely

H={ψ :{−s,−s+1, ..., s−1, s}→C } (3)

with the inner product

⟨φ|ψ⟩=
s∑

n=−s

φ(n)ψ(n). (4)

The usual Fourier transform

F :L2(R)→L2(R) :Ψ 7→ F [Ψ],

F [Ψ](p)= 1√
h

∫∞
−∞ e−2πipq/h Ψ(q) dq,

(5)
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where h is the Planck constant, is a unitary transform.
Its inverse is the adjoint transform

F † :L2(R)→L2(R) :Ψ 7→ F †[Ψ],

F †[Ψ](p)= 1√
h

∫∞
−∞ e2πipq/h Ψ(q) dq,

(6)

The corresponding discrete-variable version [2, 3],

F :H→H :ψ 7→ F[ψ],

F[ψ](k)= 1√
d

s∑
n=−s

e−2πikn/d ψ(n), (7)

is also a unitary transform. Its inverse is the adjoint

F† :H→H :ψ 7→ F†[ψ],

F†[ψ](k)= 1√
d

s∑
n=−s

e2πikn/d ψ(n).
(8)

The position operator

q̂ :Dq⊂L2(R)→L2(R) :Ψ 7→ q̂Ψ,

(q̂Ψ)(q)=qΨ(q),
(9)

whose domain of definition is

Dq=

{
Ψ∈L2(R)

∣∣∣∣ ∫ ∞

−∞
|qΨ(q)|2 dq<∞

}
, (10)

admits the discrete-variable version [2, 4–6]

q̂ : H→H :ψ 7→ q̂ψ, (q̂ψ)(n)=nψ(n). (11)

The momentum operator

p̂ :Dp⊂L2(R)→L2(R) :Ψ 7→ p̂Ψ,

p̂Ψ=−iℏ d
dqΨ,

(12)

whose domain of definition is

Dp=

{
Ψ∈L2(R)

∣∣∣∣ ∫ ∞

−∞
|Ψ′(q)|2 dq<∞

}
, (13)

satisfies the relation

p̂=F †q̂F. (14)
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FIG. 1. Gaussian functions g3 and g1/3 in the case d=31.

The discrete-variable version of momentum is [2, 4–6]

p̂ :H→H, p̂=F†q̂F. (15)

For any κ∈(0,∞), the Gaussian function gκ : R → R,

gκ(q)=e−κπq2/h, (16)

satisfies the relation

F [gκ]=
1√
κ
g1/κ. (17)

The corresponding discrete-variable Gaussian function

gκ :{−s,−s+1, ..., s−1,s}→R,

gκ(n) =
∞∑

α=−∞
e−κπ(n+αd)2/d,

(18)

satisfies the relation [2, 7, 8]

F[gκ]=
1√
κ
g1/κ (19)

similar to (17). It is a particular case of Jacobi θ func-
tion [2, 3, 7]. Because F is a unitary transform, the cor-
responding normalized discrete Gaussian functions

gκ=
gκ

||gκ||
where ||gκ||=

√√√√ s∑
n=−s

(gκ(n))2, (20)

satisfy the relation

F[gκ]=g1/κ. (21)

In the continuous case, the usual position and momen-
tum satisfy the remarkable relation

[q̂, p̂] = i h
2π
, (22)

where [q̂, p̂]= q̂p̂− p̂q̂ is the commutator of q̂ and p̂. This
means that

q̂(p̂Ψ)− p̂(q̂Ψ)=i h
2π
Ψ (23)

TABLE I. Eigenvalues of [q̂, p̂]− i d
2π

in two cases.

Case d = 11 Case d = 31

−1.48548×10−8 i

7.96337×10−7 i

2.04883×10−5 i

3.36098×10−4 i

3.93615×10−3 i

3.49009×10−2 i
−0.240939 i

1.33714 i
−5.45524 i
19.9934 i

−34.9234 i

−6.8034×10−16 i

−1.28585×10−15 i

2.07899×10−15 i

−3.04408×10−15 i

3.57322×10−15 i

5.70417×10−15 i

−1.12090×10−14 i

1.58666×10−14 i

−2.13350×10−14 i

1.13714×10−13 i

−1.41394×10−12 i

1.73886×10−11 i

−1.91428×10−10 i

1.9093×10−9 i

−1.73552×10−8 i

1.44395×10−7 i

−1.10354×10−6 i

7.76978×10−6 i
−0.000050515 i
0.000303805 i
−0.00169225 i
0.00873614 i
−0.0417956 i

0.185225 i
−0.757941 i

2.86832 i
−9.80352 i
31.5302 i

−80.4393 i
214.181 i

−310.677 i

for any Ψ from the subspace

{Ψ∈Dq ∩Dp | q̂Ψ∈Dp and p̂Ψ∈Dq } . (24)

If we compare the continuous and discrete version of
the Fourier transform, then we arrive at the conclusion
that, in the discrete case, the role of Planck constant is
played by the dimension d of the Hilbert space. Conse-
quently, the discrete version of the relation (22) is

[q̂, p̂] = i d
2π

(25)

A direct computation shows that, generally, this relation
is not satisfied. By computing the eigenvalues of the
operator [q̂, p̂]− i d

2π for different values of d, one arrives
at the conclusion that the eigenvalues λ with |λ| < 0.001
represent 36% in the case d = 11, represent 64% in the
case d = 31, represent 77% in the case d = 61 and 84%
in the case d=101 (see Table I and [1]). So, for d large
enough, a significant part of the eigenvalues of [q̂, p̂]− i d

2π
are almost null.
By using the relation

(Fq̂F†)ψ(n)= 1
d

s∑
m,k=−s

e2πim(k−n)/dmψ(k)

= 1
d

s∑
m,k=−s

e−2πim(k−n)/d (−m)ψ(k)

=−(F†q̂F)ψ(n)=−p̂ψ(n)

TABLE II. Case d=11: φ1, φ2, ..., φd are eigenstates of F.

k ∥ Fφk−φk ∥ ∥ Fφk+φk ∥ ∥ Fφk−iφk ∥ ∥ Fφk+iφk ∥
1 2.0×10−10 2 1.4142 1.4142

2 1.4142 1.4142 2 1.2×10−10

3 2 6.3×10−11 1.4142 1.4142

4 1.4142 1.4142 1.3×10−12 2

5 2.7×10−13 2 1.4142 1.4142

6 1.4142 1.4142 2 2.3×10−14

7 2 1.3×10−14 1.4142 1.4142

8 1.4142 1.4142 3.4×10−15 2

9 1.0×10−15 2 1.4142 1.4142

10 1.4142 1.4142 2 8.3×10−16

11 2 8.4×10−16 1.4142 1.4142
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TABLE III. Case d=11: for certain κ, the Gaussian gκ is mainly a linear combination of φ1, φ2, φ3, φ4, φ5.

κ=1 κ=2 κ=1/2 κ=3 κ=1/3
|⟨φ1|gκ⟩| 0.999968 0.970268 0.970268 0.926811 0.926811

|⟨φ2|gκ⟩| 8.79611×10−11 8.56453×10−11 8.50632×10−11 8.19559×10−11 8.11208×10−8

|⟨φ3|gκ⟩| 3.14918×10−11 0.228139 0.228139 0.327299 0.327299

|⟨φ4|gκ⟩| 3.83482×10−13 3.8548×10−13 3.58495×10−13 3.74436×10−13 3.36051×10−13

|⟨φ5|gκ⟩| 0.00798631 0.0736351 0.0736351 0.151392 0.151392

|⟨φ6|gκ⟩| 8.61761×10−15 9.0834×10−15 8.25462×10−15 9.15919×10−15 8.20907×10−15

|⟨φ7|gκ⟩| 2.78121×10−15 0.0288995 0.0288995 0.0830314 0.0830314

|⟨φ8|gκ⟩| 1.82021×10−16 1.7344×10−16 2.47453×10−16 1.32587×10−16 3.49103×10−16

|⟨φ9|gκ⟩| 0.000416018 0.0146752 0.0146752 0.0549712 0.0549712

|⟨φ10|gκ⟩| 5.0058×10−17 4.89024×10−17 6.26338×10−17 4.68507×10−17 7.58437×10−17

|⟨φ11|gκ⟩| 1.98563×10−16 0.00777324 0.00777324 0.0325688 0.0325688

we get Fq̂F†=−p̂ and

F[q̂, p̂] =Fq̂ p̂− Fp̂ q̂=Fq̂ F†q̂F− FF†q̂F q̂
=−p̂ q̂F− q̂F q̂F†F=[q̂, p̂]F,

that is

F[q̂, p̂]=[q̂, p̂]F. (26)

Let λ1, λ2, ..., λd be the eigenvalues of [q̂, p̂]− i d
2π , con-

sidered in the increasing order of their modulus (|λ1| ≤
|λ2| ≤ ... ≤ |λd|), and let φ1, φ2, ... , φd be the corre-
sponding eigenfunctions, that is

([q̂, p̂]− i d
2π
)φk=λk φκ. (27)

The relation

([q̂, p̂]−i d
2π
)φk=λk φκ ⇒ ([q̂, p̂]−i d

2π
)Fφk=λk Fφκ

and the numerical data (see Table II) suggest that the
states φ1, φ2, ... , φd are also eigenstates of F, namely

Fφn=θn φn, where θn∈{1,−1, i,−i}. (28)

For d large enough and small ε > 0, there exists δ > 0
such that, for κ∈ ( 1δ , δ), the most significant coordinates

of gκ in the eigenbasis {φ1, φ2, ..., φd} of [q̂, p̂]− i d
2π are

those corresponding to the functions φk with |λk| < ε
(see Table III). We can consider that

[q̂, p̂] ≈ i d
2π

for gκ with κ∈( 1
δ
, δ) (29)

(see Tables III, IV and Figure 2). From (28), we get

|⟨φn|gκ⟩|= |⟨θnφn|gκ⟩|= |⟨Fφn|gκ⟩|= |⟨φn|g1/κ⟩|, (30)

in agreement with the numerical data from Table III.
Since F is a unitary transform, we get

||[q̂, p̂]ψ − i d
2πψ|| = ||F[q̂, p̂]ψ − i d

2πFψ||
= ||[q̂, p̂]Fψ − i d

2πFψ||,
(31)

for any ψ∈H. Particularly, we have

∥ ([q̂, p̂]− i d
2π
)gκ ∥=∥ ([q̂, p̂]− i d

2π
)g1/κ ∥, (32)

TABLE IV. [q̂, p̂]gκ ≈ i d
2π

gκ is satisfied for certain gκ.

κ ||
(
[q̂, p̂] − i d

2π

)
gκ||

Case d = 11 Case d = 31

1 0.0022697 2.68152×10−9

2 0.283112 0.000670943
1/2 0.283112 0.000670943
3 0.0383181

1/3 0.0383181

in agreement with the numerical data from Table IV.
A direct consequence of (29) is

|⟨gκ|[q̂, p̂]|gκ⟩| ≈ d
2π

for any κ∈( 1
δ
, δ) (33)

(see Table V). From the Robertson-Schrödinger uncer-
tainty relation, it follows that the inequality

∆q̂ ∆p̂ ≥ |⟨gκ|[q̂, p̂]|gκ⟩|
2

for κ∈( 1
δ
, δ) (34)

that is

∆q̂ ∆p̂ ≥ d
4π

for gκwith κ∈( 1
δ
, δ) (35)

is approximately satisfied (see Table V and Figure 3). By
using (21) and (26) we get

⟨g1/κ|[q̂, p̂]|g1/κ⟩=⟨Fgκ|F[q̂, p̂]|gκ⟩=⟨gκ|[q̂, p̂]|gκ⟩, (36)

in agreement with the numerical data from Table V.
In conclusion, if the dimension d of the Hilbert space

describing the quantum system (qudit) is large enough,
there exists a family Gδ = {gκ | κ∈( 1

δ
, δ) } of discrete-

variable Gaussian states gκ depending on a continuous
parameter κ∈( 1

δ
, δ) such that the relations

[q̂, p̂] = i d
2π

and ∆q̂ ∆p̂ ≥ d
4π

(37)

are approximately satisfied for any gκ∈Gδ. Any desired
precision can be obtained by increasing the dimension
d of the Hilbert space and use of an adequate interval
( 1
δ
, δ). In addition, the family Gδ is Fourier invariant:

gκ∈Gδ ⇒ F[gκ]=g1/κ∈Gδ. (38)

The relations (37) are approximately satisfied in a space
larger than Gδ, containing certain linear combinations of
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TABLE V. |⟨gκ|[q̂, p̂]|gκ⟩| ≈ d
2π

is satisfied for certain gκ.

κ | |⟨gκ|[q̂, p̂]|gκ⟩| − d
2π |

Case d = 11 Case d = 31

1 1.21005×10−6 8.88178×10−16

2 0.00350868 2.47852×10−9

1/2 0.00350868 2.47852×10−9

3 0.0552824 7.39351×10−6

1/3 0.0552824 7.39351×10−6

4 0.204735 0.000383435
1/4 0.204735 0.000383435
5 0.00397916

1/5 0.00397916
6 0.0185731

1/6 0.0185731
7 0.0550503

1/7 0.0550503
8 0.122973

1/8 0.122973

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
k
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FIG. 2. ∥ ([q̂, p̂]− i d
2π

)gk|| in the cases d=11 and d=31.

gκ from Gδ. Any function gκ admits the explicit defini-
tion (18) as the sum of a convergent series. The discrete-
variable Wigner function [2, 9] of any function gκ ∈ Gδ

can be explicitly represented as the sum of a convergent
double series [1, 8]

Wgκ
(n, k)=C

∞∑
α,β=−∞

(−1)αβWgκ

(
(n+α d

2
)
√

h
d
, (k+β d

2
)
√

h
d

)
(39)

involving the continuous-variable Wigner function

Wgκ(q, p)=

√
2

κh
exp

{
−2π

h
(κq2 +

1

κ
p2)

}
(40)

of the corresponding Gaussian state gκ ∈ L2(R) and a

normalizing constant C. The existence of these explicit

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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0.00010

FIG. 3. | |⟨gk|[q̂, p̂]|gk⟩| − d
2π

| in the cases d=11 and d=31.

definitions opens a way in the direction of mathematical
investigation of properties and creation of some useful
mathematical formalisms.
The operators

â=
√

π
d (q̂+ip̂),

â†=
√

π
d (q̂−ip̂),

similar to
â=

√
π
h (q̂+ip̂),

â†=
√

π
h (q̂−ip̂),

(41)

also approximately satisfy

[â, â†]=1 for any gκ∈Gδ. (42)

In this short note, we have considered only the case of
pure discrete-variable Gaussian states, but the numer-
ical data show [1] that, in the basis {φ1, φ2, ..., φd},
the most significant elements of the density matrix of
certain mixed discrete-variable Gaussian states are also
those corresponding to small |λk|. More similitude with
the continuous-variable Gaussian states can be discov-
ered [1] by investigating the behavior with respect to a
discrete version of the unitary Gaussian transforms.
Quantum Information uses a continuous-variable de-

scription, but it is mainly limited to a very particu-
lar class of states (including the Gaussian states) and
a very particular class of unitary transforms (including
the Gaussian unitaries). The discrete-variable version
of the commutation relation of the discrete-variable ver-
sion of position and momentum operator is acceptably
satisfied by a particular class of states (including cer-
tain discrete-variable Gaussian states). We think that,
some useful models involving only such particular states,
can be built in the discrete-variable case by following the
analogy with the continuous-variable case.
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