Discrete-variable Gaussian states and the canonical commutation relation
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In the case of a quantum system with finite-dimensional Hilbert space, the discrete versions of
the position and momentum do not satisfy the discrete version of the usual commutation relation.
However, if the dimension of the Hilbert space is large enough, then this relation is approximately
satisfied by a significant part of the pure states. We show that among these states there is a Fourier
invariant family of discrete-variable Gaussian states depending on a continuous parameter. These
states behave similar to their continuous-variable counterpart, and may have useful applications.

The quantum systems with finite-dimensional Hilbert
space play an important role in the investigation of quan-
tum mechanics foundations, in Quantum Information,
and in other applications. The mathematical description
of these discrete-variable systems is obtained by follow-
ing, as much as possible, the analogy with the continuous-
variable quantum systems.

In certain cases, the discrete-variable versions have
properties very similar to those concerning the contin-
uous systems, but this does not happen in all the cases.
Here, we continue the investigation of the discrete ver-
sion of the canonical commutation relation, started in
[1]. Among the new results, there are the formulas (26),
(28), (30), (32), (36), Fig. 2 and Fig. 3.

A spinless particle with mass, in one dimension, is usu-
ally described by using the Hilbert space

LQ(R):{\IJ:R—NC ‘ / |U(q)[2 dq<oo} (1)
of all the square integrable functions with
@)= T @

In order to have a simple analogy, we shall consider only
the case of a discrete-variable quantum system described
by an odd-dimensional (d =2s+1) Hilbert space H re-
garded as a space of functions, namely

H={y:{-s,—s+1,..,8—1,8} =>C} (3)

with the inner product

S

felv)= " wln)v(n). (4)

n=-—s
The usual Fourier transform
F:L)(R) = L*R): ¥+ F[v],
FV](p)= 5 [7 e 2™ Pa/M U (q) dg,
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where h is the Planck constant, is a unitary transform.
Its inverse is the adjoint transform

FT.L2(R)— L?(R): U FT[0],
o o (6)
FU[®)(p) =5 [, e*™P4/" W(q) dg,

The corresponding discrete-variable version [2, 3],
FH-H Y = F[Y],
Slwl(k) =5 32 em2mtn/dys(n), ™

n=-—s

is also a unitary transform. Its inverse is the adjoint
FHH—=H Y = F Y,
Sl = 30 e2mikn/d (). ®)

n=-—s
The position operator

G:D,CLA(R) = L2(R): U+ G U,
(@) (q)=q¥(q),

whose domain of definition is
p~{ver® | [ uv@ra<s}. o)
admits the discrete-variable version [2, 4-6]
q:HoHip—=qp, @U)(n)=ni(n). (1)
The momentum operator

p:D, CL2(R)—L2(R): W p U,

. . 12
p\IIZ—lhd%I\I/, (12)

whose domain of definition is
D,= { U e LA(R) ‘ / |‘Il’(q)2dq<oo} , (13)
— 00

satisfies the relation

p=FTgF. (14)
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FIG. 1. Gaussian functions g3z and g /3 in the case d=31.

The discrete-variable version of momentum is [2, 4-6]

prH—=M, P=F43. (15)
For any k€ (0,00), the Gaussian function g, : R — R,
gx(@) =", (16)

satisfies the relation
Flgu]= 7= 91/x- (17)

The corresponding discrete-variable Gaussian function

gx:{—s,—s+l,....,s-1,s} >R,
gm(n) — io: e—fm’(n—&-ad)z/d (18)
satisfies the relation [2, 7, 8]
S[gfi] \f 91/k (19)

similar to (17). It is a particular case of Jacobi 6 func-
tion [2, 3, 7]. Because § is a unitary transform, the cor-
responding normalized discrete Gaussian functions

where |lg.||=

Y (ae(n)?, (20)

n=-—s

g = O
gl

satisfy the relation

%’[gn]:gl/n' (21)

In the continuous case, the usual position and momen-
tum satisfy the remarkable relation

(G, 9] = i3%, (22)

where [¢, p] =§p — pqg is the commutator of ¢ and p. This

means that

q(pY) — p(gV) =iz ¥ (23)

TABLE 1. Eigenvalues of [§,p] —

1— in two cases.

Case d = 11

Case d = 31

—1.48548x 10781
7.96337x 1077 i
2.04883x107%
3.36098x 1041
3.93615x10721

—6.8034x 10~ 1%}
—1.28585x 10715
2.07899x 10715 §
—3.04408 x 1017
3.57322x 10 1% i
5.70417x 107 1%§
—1.12090x 1014

1.44395x 107" i
—1.10354x 10791
7.76978 x 1078 i
—0.000050515 i
0.000303805 i
—0.00169225 i
0.00873614 i

i
1
1
l
1
1
l
—2.13350x 10" 4
1
l
1
1
l
1

L 1 lo-14; —0.0417956 i
34900(;3;410(‘3)39 58666 <10 - 0.185225 i
- ! —0. 411
1.33714i 1.13714x 1073 02722232;
—5.45524 1 —1.41394x 107 "% _0.80352
19.99341 1.73886x 1071 i 31.5302
—34.92341 —1.91428x 10710 —80.4393i
1.9093x 107214 214.1811
—1.73552x 108 i —310.6771i

for any ¥ from the subspace

{YeD,ND, | §jveD, and p¥eD,}. (24)

If we compare the continuous and discrete version of
the Fourier transform, then we arrive at the conclusion
that, in the discrete case, the role of Planck constant is
played by the dimension d of the Hilbert space. Conse-
quently, the discrete version of the relation (22) is

[9,p] =157 (25)

A direct computation shows that, generally, this relation
is not satisfied. By computing the eigenvalues of the
operator [q, p] — 1— for different values of d, one arrives
at the conclusion that the eigenvalues A with |A| < 0.001
represent 36% in the case d = 11, represent 64% in the
case d = 31, represent 77% in the case d =61 and 84%
in the case d=101 (see Table I and [1]). So, for d large
enough, a significant part of the eigenvalues of [q,p] — 1i
are almost null.
By using the relation

(FaHv(n)=1 XS: e2mim(k=n)/d o) (k)

m,k=—s

e—2mim(k—n)/d (=m) (k)
— (&) (n) = —prp(n)

TABLE II. Case d=11: 1, 2, ..., pq are eigenstates of §.
k. I8er—erll  I8erterll I Ser—ier |l |l Serticr |
1 2.0x10" 10 2 1.4142 1.4142
2 1.4142 1.4142 2 1.2x10710
3 2 6.3x107 11 1.4142 1.4142
4 1.4142 1.4142 1.3x 10712 2
5 2.7x107 18 2 1.4142 1.4142
6 1.4142 1.4142 2 2.3x107
7 2 1.3x107 1% 1.4142 1.4142
8 1.4142 1.4142 3.4%x107%° 2
9 1.0x1071? 2 1.4142 1.4142

10 1.4142 1.4142 2 8.3x10716

11 2 8.4x 10716 1.4142 1.4142




TABLE III. Case d=11: for certain x, the Gaussian g, is mainly a linear combination of @1, w2, ¥3, @4, 5.

k=1 k=2 k=1/2 k=3 k=1/3
[{e1lgn)] 0.999968 0.970268 0.970268 0.926811 0.926811
2lgn 8.79611x 1011 8.56453 x 1011 8.50632x 10711 8.19559x 10~ 1! 8.11208x 1078
%2}
3lgn 3.14918 x 1011 0.228139 0.228139 0.327299 0.327299
vslg
[{palgn)] 3.83482x 10713 3.8548x 10713 3.58495x 10713 3.74436x 10713 3.36051x 10713
|{@5]gn)] 0.00798631 0.0736351 0.0736351 0.151392 0.151392
[{6]gw)] 8.61761x 107 1° 9.0834x1071° 8.25462x 10710 9.15919x 107 1° 8.20907x 107 1°
7lgn 2.78121x 10713 0.0288995 0.0288995 0.0830314 0.0830314
vrlg
[{ps]gw)] 1.82021x 10716 1.7344x 10716 2.47453x 10716 1.32587x 10716 3.49103x 10716
(@0l 0.000416018 0.0146752 0.0146752 0.0549712 0.0549712
H{e1olge)] 5.0058 x 1017 4.89024x107 17 6.26338x 10717 4.68507 x 10717 7.58437x 10717
[{(p11]gx)] 1.98563 x 10716 0.00777324 0.00777324 0.0325688 0.0325688
we get F43T=—p and o
TABLE 1V. [q, plgx =~ i%gn is satisfied for certain g..
51a, ] :qufSPq:Sq%*qSTfSS*qu TGt el
_ aa PPN N P K 9P| —137) 8k
=—pi% — 45 433 =1a, pIS, Case d = 11 : Case d = 31
1 0.0022697 2.68152x 107
that is 2 0.283112 0.000670943
1/2 0.283112 0.000670943
FA IR 3 0.0383181
Sla,p]=[a, pl3. (26) 13 0.0383181
Let A1, Ag, ..., Ag be the eigenvalues of [q, ] — 12 , con-

sidered in the 1ncreasmg order of their modulus (|A;| <
[A2] < ... < |Adl), and let @1, @2, ... , @q be the corre-
sponding eigenfunctions, that is
([q’m _i%)V)k:)\k P+ (27)

The relation

(6, pl—is%) =Xk pr = ([0, p]—15%) For=Ar Tow
and the numerical data (see Table II) suggest that the
states 1, @2, ... , @q are also eigenstates of §, namely

Son="0, ¢n, where

O,e{1,—1,i,—i}.  (28)

For d large enough and small € > 0, there exists 6 > 0
such that, for k€ (%, 0), the most significant coordinates
of g, in the eigenbasis {¢1, 2, ..., pa} of [4,p] — 1— are
those corresponding to the functlons i with |)\k| < e
(see Table IIT). We can consider that

[§,p) ®iL for g, with ke (3,9) (29)

(see Tables III, IV and Figure 2). From (28), we get

|<90n|gn>| = ‘ <0n§0n|gm>| = |<$<Pn|gfs>| = |<<pn|g1/n>|a (3())

in agreement with the numerical data from Table III.
Since § is a unitary transform, we get

A A _d _ ~ A .i
I[a, 8]y — igk v = |I?[ﬁj Pl — 15289l 31)
= /[, pI — 1*31/}”
for any 1 € H. Particularly, we have
I ([a,p] —iz7)gw [I=1 ([6, 0] = i57)81/s (32)

in agreement with the numerical data from Table IV.
A direct consequence of (29) is

(gx[a, pllgn)| = 5% forany ke(5,6)  (33)

(see Table V). From the Robertson-Schrédinger uncer-
tainty relation, it follows that the inequality

that is

Ag Ap > L for g, with ke (3,0) (35)
is approximately satisfied (see Table V and Figure 3). By
using (21) and (26) we get

(58x |80, pllgx) = (&4, pllgx), (36)

in agreement with the numerical data from Table V.

In conclusion, if the dimension d of the Hilbert space
describing the quantum system (qudit) is large enough,
there exists a family G5 = {g. | k€(3,0) } of discrete-
variable Gaussian states g, depending on a continuous
parameter k€ (3,0) such that the relations

<g1/m|[elaﬁ]|gl/ﬁ>:

[@,p] =iz and Ag§Ap> 7 (37)
are approximately satisfied for any g, €Gs. Any desired
precision can be obtained by increasing the dimension
d of the Hilbert space and use of an adequate interval
(3,9). In addition, the family G5 is Fourier invariant:

gl/negﬁ' (38)

The relations (37) are approximately satisfied in a space
larger than Gg, containing certain linear combinations of

g.€Gs = 3[&@] =



TABLE V. |(gx|[d, p]lgs)| = = is satisfied for certain g,.

27
s & d
K | Kgxlld: pllgn)| — 5% |
Case d = 11 Case d = 31
1 1.21005x 10 ° 8.88178 x 10~ 16
2 0.00350868 2.47852x 1077
1/2 0.00350868 2.47852x 1077
3 0.0552824 7.39351x 1076
1/3 0.0552824 7.39351x1076
4 0.204735 0.000383435
1/4 0.204735 0.000383435
5 0.00397916
1/5 0.00397916
6 0.0185731
1/6 0.0185731
7 0.0550503
1/7 0.0550503
8 0.122973
1/8 0.122973

0.25

0.20

0.15

0.10

0.05

[ . . R 4
- 06 038 1.0 1.2 14 1.6 1.8 20

FIG. 2. || ([d,p] — isX)gk|| in the cases d=11 and d=31.

g from Gs. Any function g, admits the explicit defini-
tion (18) as the sum of a convergent series. The discrete-
variable Wigner function [2, 9] of any function g, € Gs
can be explicitly represented as the sum of a convergent
double series [1, 8]

W, (0, k) =C Y (D)W, ((n+ad) /5, (k+62)\/5)

a,f=—00
(39)
involving the continuous-variable Wigner function

W= 2 oo e ) )

of the corresponding Gaussian state g, € L?(R) and a

normalizing constant C. The existence of these explicit
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FIG. 3. | |(gx|[d,P]|gr)| — 5= | in the cases d=11 and d=31.

definitions opens a way in the direction of mathematical
investigation of properties and creation of some useful
mathematical formalisms.

The operators

a=\/5@G+ip), a= /% (q+ip),
. o similar to (41
f=\/7@—ip), =% a—ip),
also approximately satisfy
[6,aT]=1 for any g.€Gs. (42)

In this short note, we have considered only the case of
pure discrete-variable Gaussian states, but the numer-
ical data show [1] that, in the basis {¢1, ¥2, ..., Ya},
the most significant elements of the density matrix of
certain mixed discrete-variable Gaussian states are also
those corresponding to small |[Agz|. More similitude with
the continuous-variable Gaussian states can be discov-
ered [1] by investigating the behavior with respect to a
discrete version of the unitary Gaussian transforms.

Quantum Information uses a continuous-variable de-
scription, but it is mainly limited to a very particu-
lar class of states (including the Gaussian states) and
a very particular class of unitary transforms (including
the Gaussian unitaries). The discrete-variable version
of the commutation relation of the discrete-variable ver-
sion of position and momentum operator is acceptably
satisfied by a particular class of states (including cer-
tain discrete-variable Gaussian states). We think that,
some useful models involving only such particular states,
can be built in the discrete-variable case by following the
analogy with the continuous-variable case.
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