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Abstract. Finite frame quantization is a discrete version of the coherent state
quantization. In the case of a quantum system with finite-dimensional Hilbert space,
the finite frame quantization allows us to associate a linear operator to each function
defined on the discrete phase space of the system. We investigate the properties of the
density operators which can be defined by using this method.

1. Introduction

The quantum particle moving along a straight line is described by using the Hilbert
space L?(R). For the corresponding classical system, R is the configuration space and
R?=R xR the phase space. The position operator

q(q)=qv(q) (1)

and the momentum operator
d

e _in L 2

p=—ihg (2)
satisfy the commutation relation

(4, pl=1h (3)
and the relation

p=FTgF (4)
where

_2mi
Flo)(p) = - / ~krigp(q) dg— L / Ery(q (5)

is the Fourier transform.
In the odd-dimensional case, d=2s+1, a discrete version can be obtained by using

R={-s,—s+1,...,s—1,s} (6)
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as a configuration space, the Hilbert space (several representations are presented)

_—md — p2 _ . — .
H=C'=¢ (R)—{w.R%C}Z{Qﬁ-Z%C for all neZ

¢m+@=wm»}

with

= P(n)e(n)

n=-—s
and the discrete Fourier transform @ H—H,

27i
53

The standard basis {d_g, d_s11,...,05_1,0s}, where

Son(n) = 1 if m=m modulo d
Y1 0 if n#£Em modulo d

is an orthonormal basis. By using Dirac’s notation |m) instead of d,,, we have

(mlk) = dme, > Im)(m|=

m=—s

where [:H—"H, Iip=1), is the identity operator.
In the discrete case, the position operator q : H—H : > qu) is
qi(n)=n(n).
For the momentum operator p : H— H, the definition
p=3"4%
is more adequate than the use of a finite-difference operator instead of diq
In the discrete case, the set

R*=RxR={(n,k) | n,ke{—s,—s+1 —1,s}}

plays the role of phase space.
The Gaussian function of continuous variable (k>0 is a parameter)

g :R—R, g,{(q):e’%‘ﬂz:e’%q2
satisfies the relation
F [g:‘i] \[g L.
The corresponding Gaussian function of discrete variable, defined as [11, 15]

9. R—R, Z o~ @ (ntad)?

a=—00

satisfies the similar relation

Slox] = J=01.

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

In this article, we restrict us to the odd-dimensional case, but most of the definitions

and results can be extended in order to include the even-dimensional case d=2s also.
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2. Coherent state quantization

In the continuous case, the quantum state

represents the vacuum state. The coherent states [13]

9, )= D(q,p)|0,0),

defined by using the displacement operators [13, 16]

A

satisfy the resolution of the identity

I=5 / |9, p) (g, p| dqdp.
RZ

By using the coherent state quantization, we associate the linear operator [9]

Af:%lrh/f(q)p) g, p){q, p| dgdp
R2

to each function

" RxR—=C,

defined on the phase space R?, and such that the integral is convergent.

For example, in the case f(q,p)=¢q, we get [9]

Af:271rh/q g, p){q. p| dgdp=4,
RQ

in the case f(q,p)=p, we get [9]

Ap=5L /p g, p){q, p| dgdp=p,
]R2

_p’+¢?

5, we get [9]

and, in the case f(q,p)
2

2 2
A pe+q h* d
Af—ﬁrh/ Iq,p><q,p!dqdp:—§—dq2

2
R2

In the last case, the operator
~ 1 R?dz 1
A= — —— 4 —¢°
S W PRy

is the Hamiltonian of the quantum harmonic oscillator.

_ i i s _i1m omi omi » 2w o~
D(Qap):e 2P o Pl o 7P — o R Pl Pd o™ T 9P

(19)

(20)

(21)

(22)

(25)

(28)
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3. Finite frame quantization

The quantum state [11, 15]

00)=——lg1) (20)
can be regarded as a discrete counterpart of the vacuum state and @(n, k):H—H,
D(n, k) =e~ Tk *FHi o= 5 mh (30)

as displacement operators [16, 17].

Theorem 1. The discrete coherent states [8, 17]
[n:k) =D (n, £)|0:0), (31)
satisfy the resolution of the identity

I= Z sk (n;k|. (32)

n,k=—s

Proof. Since

=%a Z o T"qml(a)

:\/LE Z e%’”maef%ﬂina@'gl(&)

= 3 e 3 o g ()
a=-—s b*—s

— < 1 : 27”a(m n—>b) b

-y LY 0

b=—s
and
(mn;k) = (m|D(n, plooy
- <911791>e_?nkefkq e_flép?l(m)
B <gi,gl>egnkefkme?npgl(m)
= <glhgl>e_ﬂ”ke “Tkm g (m—n)
we get

S 2mri _2m
€>:é<g:gl> S gy (m—m)e 4 gy (0—)

:<gl%gl> IORIDY o'q kim=0) gi(m—n)gi(f—n)

n—fs kf—s

2 (5mggl(m n)gl(€ n) 5mg. O

91 91
n=—
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By using the finite frame quantization, we associate the linear operator [7, 8, 9]

Ap=1 3" fn k) Insk) (nskl

n,k=—s

to each function

FRxR—C

defined on the discrete phase space RZ=RxR.

Theorem 2. Let f,g: RxR— C and o, 5€C. We have:

a) f(n,k)=1 = A;=IL
b) /A\af+5g:oz]\f+ﬁ]\g.

o JWBER g4

for any n, k f
f(n,k)=0 A
d) for any n, k Ay =0.

e) trAf—f Z f(n, k).

n,k=—s

Proof.
a) Direct consequence of (32).

b) Direct consequence of the definition (33).

¢ Al=1 S Flm k) (Insk) (mik])'

n,k=—s

S F(n k) [nsk) (nik| = A,

n,k=—s

d) For any ¢ € H, we have

<77Z)7‘/A\f¢>: d

n,

NE

E
Il

—S

I
e
[

E
Il

n,k=—s

¢) trh;= 3 (mlAslm)

m=—s
S

LYY f(n k) (mlnsk) nsk|m)

m=—snk=—s
s s

=1 S fnk) S (nsk|m)(m|n;k)

n,k=—s m=—s
= > [ k) (n:k{linsk)

1Y fk). O

n,k=—s

f(n, k) (lnsk) (nsk[¢)
f(n, k) [(nskl4)]* = 0.

(33)

(34)
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In the case f(n, k)= ”2’2%2, the operator A f—% can be regarded as a discrete version
of the Hamiltonian of the quantum harmonic oscillator. The eigenfunctions ,, of A £
considered in the increasing order of the number of sign alternations, can be regarded
as a finite counterpart of the Hermite-Gauss functions ¥,,(¢). In the cases analyzed in
6], the eigenfunctions v, of A ¢ approximate ¥, (q) better than the Harper functions b,

and approximately satisfy the relation

Instead of the standard definition of the discrete fractional Fourier transform [1, 7, 12]
d—1
3= (1)) (bal- (41)
n=0
one can use [6]
o d-l
F =3 (1)) (. (42)
n=0

as an alternative definition. The Harper functions (available only numerically) are
defined as the eigenfunctions of a discrete version of the Hamiltonian of the quantum
harmonic oscillator obtained by using finite-differences [1, 7, 12]. The finite frame
quantization [6, 7, 8] seems to behave better than the method based on finite-differences
when we have to obtain discrete versions of certain operators.

4. Density operators obtained through finite frame quantization

The finite frame quantization allows us to define a remarkable class of quantum states.
Theorem 3. If the function f:RxR— [0,d] is such that
> fnk)=d (43)
n,k=—s
then the corresponding linear operator or:H—H,
or=% D Fn k) Insk) (nsk (44)
n,k=—s
15 a density operator.
Proof. Direct consequence of theorem 2. O

1

; 1s the mixed state oy = él[,

For example, the state corresponding to f(n, k)=
and the state corresponding to

) d for (n,k)=(m,?)
f(n,k)—{ 0 for (n,k)#(m,0) (45)

is the pure state oy =|m;()(m;¢|, that is, the discrete coherent state |m;¢).

Theorem 4. The set Si of all the density operators of the form (44) is a conver set.
Proof. If A€ 0, 1] and 9y, 6, € S, then

(1=X)0s+A0g=0n, where h(n,k)=(1-X)f(n,k)+Ag(n,k). O



Density operators obtained through frame quantization

Theorem 5. Sy, is the convex hull of the set of pure states { |n;k)(n;k| | n,k€R }.

Proof. The purity of a state gy is
S S

tr @?“:cT12 Z Z f(n, k’) f(m,f) |<n,k‘|m,£>|2
Since nk=—sml=—s

[{rsk|ms€)* < (nsklnsk) (millmil) =1,

(46)

(47)

0y is a pure state if and only if f is a function of the form (45), that is, o is one of the

discrete coherent states |m;f)(m;f|. O
Theorem 6. If the function f:RxR— [0,d] is such that
> fnk)=d,
n,k=—s

then the mean value
(4) —tr(agy)
0
of an observable A:H —H in the state Of 1S

<A>@f:; Z F(n, k) (n:k|Aln:k).

n,k=—s

Proof. We have . A
(A), =4 3 flnk) w(Alnsk i)

n,k=—s
s s

=1 kg_ fln, k) ;_ (m| Alnsk) (n;k|m)
=3 % fnk) 3 {ncklm) (m| Al
=1 ki:_ f(n, k) (n:k|Aln:k). O

Theorem 7. If the function f:RxR— [0,d] is such that
> fnk)=d,

n,k=—s

then, under the Fourier transform, 0 maps as
o5 — S8 =0y,
where g(n, k)= f(—k,n).
Proof. Since

(48)

(49)

(50)
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(m|F|nsk) =

—~

m|§© (TL, k)|0,0> = \/17 @é(n’ k)gl(m)

s

= Vet va, 2,0 D Ra ()

=—S8

S
—_ 1 2 mlo—"gnk o 27 ke
" g T Tl
’ n=-—s

S

= L Z R m 91(5—”)

(91,91) =
—mip : 27” n)(m—
= (gll,gl) e d kﬁ ; e~ (£+n)( k)g (g)
Cmipk 2T 5. 2w
e e $ g
Tk —28pm & N
= Ve el T Slalim k)

= L o#rk e gy (m— k) = (mlk:—n),

we have §|n;k)=|k;—n), and consequently

Sosst=15 X f(n k) Flnsk) (nik[S

n,k=—s
=g kX_Z f(n, k) |k;—n) (k;—n|
=i X [k Rk, O

Theorem 8. If the function f:RxR— [0,d] is such that
> fnk)=d, (53)

n,k=—s
then, under the displacement ©(m, (), the operator o5 maps as
op = D(m, 05D (m, 0)=o,, (54)

where g(n, k)= f(n—m (modd), k—¢(modd)).
Proof. We have (see [3])
@(me)@f@(m,e):é z F(n, k) D(m, 0)|n:k) (n;k| DT (m, £)

=4 Z f(n, )!n+m(modd) k40 (mod d)) (n+m (mod d);k+¢ (mod d)|

n,k=—s
S f(n—m(modd), k—f (mod d)) [n:k) (n:k|. O
n,k=—s

Theorem 9. If the function f:RxR— [0,d] is such that
> fn,k)=d, (55)

n,k=—s
then, under the transposition map |7) (€| — |€)(j|, the operator oy transforms as

where g(n, k)= f(n,—k).
Proof. Since
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s k) = Z 17} (ilns k) = Z |-7 N ke glkjg (J—n),
Jj=—s j=—s

under the transposition map |7)(¢| — |€)(j|, the operator

\n; k)(n; k| = Z I g 823%]6 T gy (j—n) g1 ((—n)

jl=—s

transforms to

Z 10l ey TR TTR g (i—n) g1 (0—n) =|n; —k) (n; —k|. O

Jhl=—s

Theorem 10. If the function f:RxR— [0,d] is such that

> fn,k)=d, (57)

n,k=—s
then, under the parity transform |j) — II|j) =| —j), the operator oy maps as
o5 — IlofIl=gy, (58)

where g(n, k)= f(—n,—k).
Proof. Since g1(—n)=g;(n), under the transform |j) — II|j)=| —7),

_migg  2mip .
|n k Z |j 91 g1) ”ke @t gl(]_n)7
j=-—s
maps to
Tink 27 .
519 AT gy (o) = —mi—k). O
Jj=—s

In the odd-dimensional case, the discrete Wigner function [10, 17, 19] of a density
operator p:H —H, is usually defined as 20,: R xR —R,

W, (n, k)= Z e TE (0 m|g|n—m). (59)

m=—s

The discrete Wigner function of a pure state o=|v) (1| is [2, 3, 4, 5]

s

Wy k)= 3 e T gntm) lnm). (60)

m=—s

Theorem 11. If the function f:RxR— [0,d] is such that

> fnk)=d, (61)

n,k=—s

then the discrete Wigner function of o5 is

g):O Z f(n’k) Z (_1)0456—%(m—n+a%)2€_%ﬂ(g_k+lgg)2’ (62)

n,k=—s a,f=—00
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where C' is a normalizing constant.

Proof. We have (see [3, 4, 5])

S

w@f(m,ﬁ)zé Yo f(n k)W (m,L)

n,k=—s
s

=3 3 f(n, k) Wiee) (m—n,L—Fk)

n,k=—s
=C 3 flnk) 3 (~h)edimmadfieF kAT O
n,k=—s a,f=—00

5. Composite quantum systems

Let SA,SBG{LQ,S,...}, da=2s+1, dg=2sp+1, d=dadp,
RA:{—SA,—SA—l—l,...,SA—l,SA}, HA:CdA = {w:RA—HC},
Rp={—sp,—sp+1,...,s5—1,8}, Hp=C?® ={p:Rp—C},
R:RAXRB, H=HrQHp = {\I’ZRAXRB%C}.

The tensor product of two tight frames is a tight frame. Particularly,

{Inm;k.0) =nm;kl) ap=|n:;k), @|m;0), | n,k€Rs, mlERE }
is a tight frame in H=H 4 ®@H g, namely

SA SB SA SB
a2 2 InmkOmmikl=7g > 3 k), @mil), (nik| @ msl]

n,k=—sq mfl=—sp n,k=—sa ml=—sp

SA sB
== 2 2 Imk)(nkl@|myl)(m;d]

n,k=—sq mfl=—sp
SA SB

=g > Imklmklogs Y [ml)y(mid]
n,k=—s4 mil=—sp
= Iy, ® Iy, =.
By using the finite frame quantization, we associate the linear operator
SA SB
or=5>"" > fln,msk, ) [nmik, L) (nmsk,(] (63)
n,k=—sa ml=—sp
to each function
Fi:(RAXRE)X(RaxRp)—10,d], (64)

defined on the discrete phase space R?, and satisfying the relation

ZA ZB f(n,m;k, 0)=d. (65)

n,k=—sa ml=—sp

If f:RAXxRa— [0,da] and ¢g:RpxRp— [0,dpg] are such that
sB

ZA: f(n,k)=da, > glm,0)=dp (66)

nk=—s4 ml=—sp
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then

SB

54
0r®04= g7 > fln k) |mk)(nikl @ 2= >0 g(m, ) [msl)(msl]

n,k=—sa ml=—sp
SA SB

=3 X 2 fk)glm, ) |nsk) (nik| @ [m;l)(msl]

n,k=—sa ml=—sp
SA SB

=3 2 2 fk)glm, 0)Insk), ®@|mil), ((nik|@ (msl]

n,k=—sa ml=—sp

1SS f(n k) g(m, 0) [namsk, ) (namsk,

n,k=—sa ml=—sp
= @h:
where h:(RaxRp)x(RaxRp)—10,d|, h(n,m;k,l)=f(n,k)g(m,?).
Theorem 12. If f:(RaXxRp)*x(RaxRp)—[0,d] is such that
Yo D fmik0)=d, (67)

n,k=—ss ml=—sp

then:

a)  trad;=oss, (68)
where  fp:RpXxRp— [0,dp], fB(m,E):tn’kis;\f(n,m;k,f).

b)  trpdr=0s,, (69)
where  faiRaxRa— [0,dal,  falnk)=- m;f_ Sk )

Proof. a) We have
sA

tradr= > alofla),

a=—s4

= SR fmik, ) dalnamik 0 (nmik dla),

a=—54 nk=—sp mfl=—sp

= 1 fmik ) 3 almik)(nskla), [mib)imit]

n,k=—sa ml=—sp a=—54
SB SA SA

= a2 X f(nym;kaﬁ)a alnskla) (alnsk), [m;€)(msl]

A

SA -
= @ 2 a2 flomik 0 mil)(mil]

ml=—sp n,k=—s4
SB

=25 > fe(m,0) [msl)(m;e].
ml=—sp

b) Similar to the proof of a). O

Theorem 13. In the case da=dp, if f:(RaxRp)X(RaxRp)—[0,d] is such that

ZA ZB f(n,m;k,0)=d, (70)

n,k=—ss ml=—sp
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then, under the SWAP transform

%A®HB_)HA®%B : ’@>A®‘w>3 = |¢>A®’@>Ba (71)
the density operator 0y maps as
éf — SWAP(@f):@g, (72)

where g:(RaxRp) X (RaxRp)—[0,d], g(n,m;k,0)=f(m,n;{ k).
Proof. We have

SWAP(p :52 Z fln,m; k) |m;l), @|n:k), (m; 0@ (n;k|=g, O

nk=—ss ml=—sp
6. Quantum channels obtained through finite frame quantization

We continue to use the notations from the previous section and choose an auxiliary
system H 4 such that dim H 4 =dim H 4 =2s4+1, and consequently Ha ={1: R4 —C }.
The pure quantum state

|©)=[®),, = Z [0, @17} Z i) (73)

i=—sa i=—sa
is the most entangled state in H4®H 4. In view of the channel-state duality (also called
Choi-Jamiolkowski isomorphism), a quantum channel £: £(H 4) — L(Hp) satisfying the
relation (I®E&)(|P)(P|) = 6 corresponds to each state ¢: Ha @Hp — Ha @Hp, up to
a normalization. Particularly, a quantum channel & : L(H4) — L(Hp) corresponds to
each state 0 Ha@Hp—Ha@Hp with f:(RaxRp)x(RaxRg)—|0,d] satisfying

ZA ZB f(n,m;k, 0)=d. (74)

In the usual way, we prove that £y admits the representation [14]

Z Z KnmkéQ nmké (75)

n,k=—ss mfl=—spg

involving the Kraus operators f(n7m;k74:’}-{A —Hpg,
> . n,m;k,l . .
Kpmibe|i) =/ L2288 (i ln mik ). (76)

From the definition of Kn mik,e Written in the form

SB
K}, =) L2505y (ii|namsk,0) (77)

Jj=-sB

we get the relation

< | nme|J>B: \/ M <7’L,m,k’,€|l]> (79)

whence
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and consequently

< ’ nmk’ﬁ_ M <n7m7k7£|Z>A/ (80)
We have

(IR&) (1) ()= g; (L&&y)lii) (57|

A RGN

=LY )l i)

1,J=—54

SA SA SB ~
=L > > S5 10 1@ Ko mseei) (5] K nmu

% ]——sA n k——sA m E——sB

= T3 Z Z Z f(n m; k K)I > <j|®A/<i|n7m;k7€><nam;kv€|j>,4/

z ,J=—5A nk=—sp ml=—sp
SA

54

2

1,j=—5A
54
>

_ éijgml aA01® (ilesli) .y = a5 o
because |
<7lk|ij§§§SA|¢>ij|@©A&i|@fljkyIfn€>== ij§§§SA<7ﬂi><j|w1><ik|9f|jf>
= fz: Oni Ojum (ik|0f|50)
_ (nk|ogm0).

So, up to a normalization, we have (IQ&;)(|®)(P|)=p;. In addition,

SA SB T .
Yo 2 K Knmikeli)

nk=—sa ml=—sp

= f(nmk:K ,
- > % > K ¥ k) (D[, m5k )
nk=—ss ml=—sp b—fsB
D YY) b), (ibln,msk.¢
= > X > Z|><|nmu|><@ln>m,,>
nk=—ss ml=—sp b=—spa=—s4
_ SZA SZB f(n,mik,0) SZB SZA -k llab) (ib kel
d |a>A <n,m, ) |6L ><Z |n,m, ) >
nk=—ss ml=—sp b=—spa=—s4
SA SB SB SA
= > > oo > |a), (iblnym;k ) (nymisk,Clab)
nk=—ss ml=—sp b=—spa=—s4

= > Y |a), (iblaglab)

b=—spa=—s4
SB SA

= 2. 2. |a), (b[(IRE)(|2)(P])]ab)

b=—spa=—sq

= 8 5 jan il 5 Ig . hla)
=% 5 a5 liXda) bE D
= 3l & iah)= X la), (i a)= 5 la),bu=li),.

for any 1€ R 4, and consequently
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sA sp
Z Z K:L,M;k,ﬁK"vm%k’f:EHA' (81)

nk=—ss mfl=—spg

7. Concluding remarks

The discrete coherent states (31) approximate well [6] the standard coherent states (20).
In the case of this finite frame, the use of the frame quantization seems to lead to a
remarkable discrete version of certain linear operators [6].

Particularly, the density operators defined in this way have some significant properties,
and may describe quantum states useful in certain applications.
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