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Abstract

The tight frames can be regarded as a particular case of POVMs (positive operator-valued mea-
sures describing generalized measurements), namely the case when all the operators are rank-
one. Each orthonormal basis is a tight frame, and every tight frame, after the embedding into a
higher-dimensional space, is the orthogonal projection of an orthonormal basis. There exist sev-
eral POVM-based definitions of coherence, and they are well-investigated. Our aim is to identify
properties specific to the particular case of tight frames, and to look for some applications. All
the POVM-based definitions use a Naimark extension. The frame-dependent coherence can be
regarded as a particular case of POVM-based coherence, but it can be defined directly, with-
out to use a Naimark extension. Its definition is a direct generalization of the basis-dependent
¢1-norm of coherence, and it offers a more accurate description because we can use a frame con-
taining several orthogonal bases. A frame-invariant definition of coherence for qubit systems is
presented.

Keywords: quantum state, coherence, tight frame

1. Introduction

Coherence is a fundamental property of quantum states arising from the superposition prin-
ciple, but its measurement is ambiguous. Estimation of coherence does not have a universal
value. In the basis-dependent case, the value of the coherence of a quantum state depends on the
basis in which it is measured. This has been a point of concern, and there exist several attempts
[1,2,3,4,5, 6, 7] to remove this ambiguity. A basis-independent definition has been obtained
[4, 5] by replacing the set of incoherent states by the set containing only the maximally mixed
state. Other attempts use optimal bases [6], quasiprobabilities [7] or POVMs [8, 9].

Our aim is to present in more details a definition of coherence, we call frame-dependent
coherence, which can be regarded simultaneously either as a direct generalization of basis-
dependent coherence or as a particular case for POVM-based coherence. The use of frame-
dependent coherence is not an absolute way to quantify the coherence, but the dependence on
the preferred frame is not as strong as in the case of basis-dependent coherence.

In a finite-dimensional Hilbert space, an orthonormal basis is a system of orthogonal unit
vectors satisfying the resolution of the identity, that is, such that the sum of the corresponding
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orthogonal projectors is the identity operator. A tight frame is a system of vectors satisfying the
resolution of the identity. In the case of a tight frame, it is not necessary the vectors to be of unit
norm or orthogonal. More than that, a frame can contain the null vector and identical vectors.

Any vector of the Hilbert space can be represented as a linear combination of the vectors of a
tight frame, but generally, the representation is not unique. Nevertheless, among all the possible
representations, there exists a standard one, defined by using the resolution of the identity satis-
fied by the vectors of the tight frame. Similar to the case of an orthonormal basis, a matrix can be
associated to a linear operator with respect to a tight frame. The £;-norm of coherence we use,
similar to that used in basis-dependent case [1, 2], is the sum of the modulus of the off-diagonal
elements of the density matrix.

2. Finite tight frames

Let (H,<.,.)) be a d-dimensional complex Hilbert space, that is, a complex vector space H
considered together with a scalar product HxH — C: (x,y) — (x,y) satisfying the conditions
(x, ay+Pz) = a{x,yy+B{x, z) and {x,y) = (y, x) for any x,y,z€ H, a,B€C, and the condition
(x,x)>0 for any x#0. The space H admits several equivalent representations:

o Standard representation
d
H=C'={x=(x1,%2, ..., ¥a) | 4 €C}, <x,y>=zfckyk; (1
k=1

e Dirac’s representation as a space of column matrices

X1 Y1
X2 o _

H={ly=| "7 || %eC{ == % ..%)|" |, )
Xd Ya

where (x|=(X; X; ... X;) is the “bra” matrix corresponding to the “ket” |x);

e Representation as a space of functions, defined on a set with d elements

d
H={y:{1,2,..d} >C), ()= ey, 3)
k=1
or s
H=(y: (=5, =s+1,..5- Ls} 5CL (epd= > @) yik), “

k=—s
in the case of odd d=2s+1.

Depending on the considered application, one representation may offer more formal advantages
than the others. In each case, we try to choose the most advantageous of them. For example, for
any a, b€ H, the formula A =|a){b| defines the linear operator

A:H —>H, Alx)=la){b|x) (®)]
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described by the matrix

ap all:?l all__72 all}d
a o _ b b b

A= 2\ By By B=| T P e (©6)
aq ad.l;] ad.l;z o ad.Ed

Definition 1. A set of vectors B={|y1), ¥2), ..., [¥a)}, considered in this order, is an orthonor-
mal basis in H if the following two conditions are satisfied:

d
Wilpy=6x  and > W=, ()
k=1
where I: H — H, I|y)=|¥) is the identity operator, and
|1 for j=k,
6jk_{ 0 for j#k. ®)

Any linear operator A : H — 9 admits the standard representation

d d
A =1Al= %]1 [ ;) | Al )l = %]1<¢’_/'|A|lﬁk> I >l 9
Jik= k=
where
WilAly ) Wil - WAl
Ao (l/f2|f.\|l//1> (l//2|f.\|¢2> (¢2|A.|¢’d> (10)
WAl WalAla) - (WalAla)

is the matrix of A in the basis {|¢/1), [¥2), ..., Wa)}.

Definition 2. A set of vectors F ={|¢1), |©2), ..., l¢n)}, considered in this order, is a tight frame
in H if the following single condition is satisfied [10, 11]:

> leXend =1L (11)
k=1

Any orthonormal basis is a tight frame. Generally, a tight frame contains more vectors than the
dimension of the space, and the representation of a vector as a linear combination of the elements
of such a tight frame is not unique. Any element iy € H admits the standard representation

W) =T =" le @) =D (e low) (12)
k=1 k=1

as a linear combination of |¢1), |¢2), ..., l¢,). This representation is a privileged one: for any
ay € C such that

W=D arlpy  wehave el = > Kl (13)
k=1 k=1 k=1



For example, in the case H = C2, the vectors
2 _ L _ L
|soo>=[ 3 J |¢1>=[ v ] |¢>2>=( v )
0 vz vz
satisfying the relation |@g)+]¢1 )+, ) =0, form a tight frame in C2,
1 0
lpoX{@ol+1e1){@1l+lp2){¢al =(O | ),

and for any |yy) € C? and any 1€ C, we have
2 2

V)] =k§0 i) prlp) = /;0 lo) Kl + ),

2 2 2 .

> Kee)+AP = 3 Kol +1AP > 3 Kl

k=0 k=0 k=0
A frame can contain the null vector or identical vectors. For example,

OO AGHCHMOAC G )
0 1 0 0 1 0 0 0 0 7 v

are tight frames in C2. Any linear operator A : H — 9 admits the standard representation

A=TAL= 3 le))Xe Miped= 3 (e lAlen le el
JK= J:K=
where
(pilAler)  (pilAlgz) - (@ilAlen)
A=l (elAlen) (ealdlg) - LealAlen) |
(adler) (@l - (ealAlpn)

is the matrix of A in the frame {|¢;), |¢2), ..., |¢n)}. If A is Hermitian, A =A", then

(pilAlpr) =<pj, Apr) ={A¢;, or) ={pr, Ap) ={@ilAlp ).

As concerne the trace of A, we have
rA=tr(IA) =) leedd) = ) trlediedA) = > (erlAlpe).
k=1 k=1 k=1
If F ={lp1), l©2), ... » ln)} is a tight frame and U : H — HH a unitary transform, then
D UleedUT=U Y lo@dU" =UTU" =1,
k=1 k=1

that is, UF ={U|¢1), Ulpz), ..., Ulp,)} is also a tight frame.

(14)

15)

(16)

a7

(18)

19)

(20)

21

(22)



3. Frame-dependent coherence of a quantum state

A pure state of a quantum system with Hilbert space H (we consider only the finite-dimensional
case), is described by a normed element ¢ € H. The corresponding orthogonal projector oy =
[}yl is self-adjoint (also called Hermitian), o, > O (its eigenvalues 1 and 0 are non-negative)
and tr oy =1 (sum of eigenvalues is 1).

The self-adjoint operators o: H — H satistying the conditions ¢ >0 (all eigenvalues are non-
negative) and tro = 1 (sum of eigenvalues is 1) are called density operators and they describe
generalized states of the quantum system. For any density operator o, in the Hilbert space 7,
there exists an orthonormal basis B = {|1), |m2), ..., [n4)} containing only eigenvectors of o and
corresponding to non-negative eigenvalues A4, Ay, ...., 44 with Zle A = 1. Thus, o admits the
spectral resolution

d
0= ) nel 23)
k=1
that is, o is a statistical mixture of the pure states 171, 1z, ..., 17y With the probabilities 1, A, ...., A4.

Definition 3. Let B ={|y1), [2), ..., ¥4)} be an orthonormal basis of H. The basis-dependent
£1-norm of coherence related to B of a quantum state o: H —H is [1, 2]

Ca(0)= ) Wl =2 ) s lolwi)l (24)

Jj#k j<k
Definition 4. Let F={|¢1), |©2), ..., l@a)} be a tight frame of H. The frame-dependent coherence
related to & of a quantum state o: H — H is

n—1

Cs@=2 ) Kejlolp=24 >" > Kpjloleol. (25)

J#k J=1 k=j+1

Frame-dependent coherence is a natural extension for basis-dependent coherence. If the used
tight frame is an orthonormal basis, then the corresponding frame-dependent coherence coincides
with the usual basis-dependent £;- norm of coherence.

Similar to the case of an orthonormal basis [3], the matrix elements {(¢lolgx) of a density
operator o can be expressed in terms of the mean values of the observables

lpj el if j=k
Wi=1 Sle)ed+loeh if j>k 26)
Lo —loe,h if  j<k.

For example, for j <k, we have

(pjlolery =tr(o le) @l = (Wijo +iWik)e- (27)
and consequently
n-1 n
Cy@=24 3" > KWijdo+iWik)gl. (28)
j=1 k=j+1

Generally, in the case of a frame, the elements |¢;) and hence the operators Wj; are not indepen-

dent. Consequently, in order to obtain the frame-dependent coherence of o, we have to measure
5



the mean values for only @ of the n? operators Wik. In addition, we have the possibility to choose
the most experimentally accessible.
Theorem 1. Frame-dependent coherence has the properties:

e Non-negativity: Cgz(0)>0;

. ¢ ¢
e Convexity: Cg( 2—1 P Om)< 2—‘1 DPm Cg(0m);
e Unitarily-invariant: Cyz(UoU")=Cz(0);

¢
where p,, > 0 are such that Y, p,,=1, and U:H — H is an arbitrary unitary operator.

m=1
Proof. We have
¢ J ¢ J ¢
Cy( X pmom)=5 X Kejl X pmonled=% X 1 X pul@jlomlei!
m=1 Jj#k m=1 Jj#Ek m=1

4 4 €
<43 3 pulleilonled= 3 pnl X Kejlomle)= X pm Cx0m)s
Jj#k m=1 m=1 Jj#k m=1

and
Cus(UeUN=2 " U UeU Uleol=£ ) K jlolpi) =C5(0)-

Jj#k Jj#k
4. Some examples

4.1. Coherence of some qubit quantum states
In Dirac notation, the qubit Hilbert space is

ofor)

usually described by using the canonical (computational) basis

({3 {1

a) The coherence of the pure quantum state

a,peC } (29)

S 31)
©0= =lo o
with respect to the orthonormal basis
cos A —sinAd
%F{ |w1>=(sin ﬂ), |w2>=( 1) } (32)
depending on a parameter A€ [0, 27), is

1
Cu,(00)=2[W1leolp2)| = 7| sin 24], (33)
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and the coherence with respect to the regular polygonal frame

5= {leo= 2
nE e n sin%

where ne{3,4,5, ...}, is (see Fig.1a)

kef{0,1,2,...,n—1} }

2 4
Cr00)="> ) Kejleoleol=— >

j#k j#k

b) The coherence of the maximally mixed state

10
| 2
¢ ‘( 0 4 )
with respect to the orthonormal basis B, is
Cs,(01)=2(1lo1¥2) =0,

and the coherence with respect to the regular polygonal frame ¥, is (see Fig.1b)

. 2(j—k)7r"

n

CO

2 2
Crlon=> ) Kpjloledl=— >

j£k J#k

o

with respect to the orthonormal basis B, is

¢) The coherence of the quantum state

o sl
N )
~——

1 .
Cs,(02) =2[{¢r1l021¥2)1 = §| sin 24|,

and the coherence with respect to the regular polygonal frame F,, is (see Fig.1c)

1
Cy, 0= >

Jj#k

2jm 2km . 2jn . 2kr
cos — cos — +3sin — sin —|.
n n n n

d) The coherence of the quantum state

(.

with respect to the orthonormal basis B, is

ENERNII
|

[STENT

S—

1
Cs,(03) =2[1loslv2)| = 5' cos 24,

and the coherence with respect to the regular polygonal frame &, is (see Fig.1d)

2 1
Cr.(03)=" Z Kejlosle =7 Z 2co

Jj#k Jj#k
7

n

. 2(]—k)7r_Sin 2(j+k)m .

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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Figure 1: Frame coherence: a) Cg, (00), b) Cg,(01), ¢) Cg,(02), d) Cg,(03) forn€{3,4,5,...,50}.

One can remark that, for large n, the frame coherence tends to be independent on #n, and can be
regarded as a kind of frame-independent coherence.
e) The coherence of any quantum state o with respect to the frame

1 _1 _1
?sa={|¢o>=\@(0), |¢1>=\E(£§), |¢2>=\E(_§)}; (45)
2 2

is non-null. Indeed, Cz, (0) = 3(K@olole1 ) +Kgolole2 )+ K¢ lole2))) and

0=Kepololp1)
C3,(0=0 & < 0=Kepolole2)|=Keololpo)|+Keololp1)l < 0=0.
0=Ke1lole2)l=Keiloleo)l+Keilole)!.

The matrix of an arbitrary quantum state, in the canonical basis, can be represented as

i0 0<a<l, 0<0<2
Q:(a be ), where “ i (46)

be ™ 1- - Va(T-a)<b< Va(I-a).
Figure 2 presents the coherence Cg, (o) in the particular cases =0 and 6= 3.

4.2. Coherence of a qutrit quantum state

In the case of a qutrit described by the Hilbert space C?, the coherence of the quantum state
1 1 0 0

o=+lo 2 o 47)
6lo o 3

8



Figure 2: Frame coherence: Cg, (o) of the state (46) in the cases §=0 and 6= %

is:

1 0
Cy,,,(0)=0 if we choose the basis B, = {llﬁl Y= ( 0 ], [ =[ 1 ], l3)= [
0 0

Cu:, (0)=0.577 if we choose the corresponding complementary basis

L I T v I e
L], Filyoy=—| e |, Filgay=—| e ¥ |l
1]’ ) 7 Z*% 3) N Z%

Cgx(0)=1.010 if we choose the frame containing both B3 and B3,

1
B =dF )= —
can { |!//1) \/§

g JpWs) 5 v v

C5....(0)=0.75 if we choose the tetrahedral frame [12, 13]

(=Y o YY) ) (!
i}letraz _( ]}7_[_] ]7_( ]}7_[_]] 5
20 1) 20 1) 201 ) 24

Cs.,(0)=1.135 if we choose the icosahedral frame (regular icosahedron) [12, 13]

R0

1 1 1 1 1 . 1 .
3={—|w1>, — —y3), —Fly1), —2F'wfz>, —F'|w3>};

(48)

(49)

(50)

(5D

(52)
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Figure 3: Change of basis: variation of the basis-dependent coherence.

where 7= ”2‘/5, n=+/5+V5, F:C3-C?,

1 1 1
1 2ni 2ni
F=—|1 e 73 e% (53)
V3 i _ i
1 €3 e 3

is the Fourier transform, and F its adjoint. Larger icosahedral frames can be obtained by includ-
ing vectors corresponding to the vertices of certain dodecahedrons, icosidodecahedrons and by
using unitary transformations.

5. Variation of the basis-dependent coherence from one basis to another one

If B ={ly1), W2), ..., W)} and B’ = {{p1), |@2), ..., lwa)} are two orthonormal bases in H,
then the tight frame

FO={Vi=tly1), Vi=tlpa), ... Vi=tlpa), Vilp1), Vilga), ..., Vilga)) (54)

depending on t€[0, 1] can be regarded as a continuous deformation of B to B’. We have

d d
cgm(g)——(l—r)ZKw |Q|wk>|+— VIA=0 " K loleol+ 5 z2|<¢,|g|sok>| (55)

Jj<k j=1 k=1 Jj<k

and one can remark that
SO ={ly1), W2), ..., a), 0,0, ..., 0} = Cy@)=2Cz0)(0)> (56)

&§(1)=1{0, 0, ..., 0, lg1), l¢2), - lea)} = Cw(0)=2Cg1)(0), (57)

for any quantum state o.

So, we can connect two orthonormal bases by a family of tight frames and investigate explic-
itly how the coherence changes when we go from one orthonormal basis to another. In Fig. 3,
we describe how the coherence of the state (47) changes when we pass from the canonical basis
B.qn to the complementary basis 87,

10



6. Incoherent states

Except for a class of particular frames, in the case of frame-dependent coherence, the set of
all the incoherent states 7 is empty. The frame-dependent version of coherence of a quantum
state o is defined directy by using the matrix of o in the chosen frame, without the need to use
the set 7 of all the incoherent states.

If the Hilbert space H is the orthogonal sum H = H; & H,, and if {|Y1), [¥2), ... W)}
is an orthonormal basis in H; and if {|¢1),|@2), ..., |@n)} is a tight frame in H,, then F =

{Wl >a |w2>’ sy |wn>7 |‘)0] >9 |(p2>a ceey |‘Pm>} iS a tlght frame in W?

DWW+ e =T (58)
k=1

=

In this case, any quantum state o of the form
0= Ay (59)
j=1

with 4; > 0 and Z;le Aj = 1 is incoherent because (¢ lolyx) = 0 for j # k, and (i jlolpr) =

(pjlolgi) = (pjlolpr) =0 for all j, k.
For example, with respect to the frame

SHHEERE

of C3, the quantum states

a 0 0
ol@=[0 1-a 0|, where a€l0,1], 61)
0o 0 O

are incoherent states, that is Cg(o(@))=0.

7. Coherence with respect to a system of coherent states

In the case of a quantum system described by the odd-dimensional Hilbert space

H={y:{=s,~s+1,...,s-1,5) — Cl, (p,¥)= ) gl y(k) (62)

k=—s

of dimension d = 2s+ 1, the discrete version of the system of canonical coherent states is a
remarkable tight frame. Each function € H is regarded as the restriction to {—s, —s+1, ..., s—1, s}
of a periodic function y: Z — C of period d.

For any k€ (0, 00), the function

[e]

g {=s,—s+1,...,5-1,5} >R, g(n)= Z Exp[—g(n—i-md)2 (63)
m=—co d
11
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Figure 4: Discrete vacuum state: discrete Gaussian g in the case d=31.

represents [14, 15, 16] a discrete version of the Gaussian function

R—->R:g+— Exp —%qﬂ (64)
and satisfies the relation [14, 15, 16, 17]
Fge=tg1. (65)
where F:H —H : y+— Fi is the Fourier transform
Fyk) = Zs Exp [—%kj] 408 (66)
Particularly, the normalized function (see Fig.4)
lg)= L lg1)s (67)

llgll

satisfying F|g) =|g), can be regarded as a discrete version of the vacuum state.
The d? discrete coherent states [14, 15, 16]

1
|j9k>:_D(j3k)|g>’ Where j’ke{_s9_s+1s"'9 s_l,s}, (68)
Vd
defined by using the displacement operators D(j, k): H — H,
. m 2mi .
D(j, k)p(n) = Exp [_Ekj} Exp [7101} w(n—j), (69)
form a tight frame & in H,
> ik K= (70)
Jk=—s

The coherence of a state o with respect to this tight frame is

1
Ci@)=7 D, Wiklon.m). (71)

(Jk)#(nm)
12



Because F|j, k)=|-k, j), we have

1 . 1 - _
Clo)=7 ), K-kjel=mml== > KiKF'oFlnm)|=C5(F'eF).  (72)
(Jjik)#(n,m) (J:k)#(n,m)

that is, any state o and its Fourier transform F'oF have the same coherence.
In the three-dimensional case C3={y: {1, 0, 1} — C}, the vacuum state is

g(-1,0, 1} = C, gO0)=3 I+ g-D=31-5=g0. (73)

3

For example, the coherence of the quantum state (47) is Cgx(0)=1.259.

8. Frame-dependent versus POVM-based coherence

A general measurement of a quantum system is described by a positive operator valued mea-
sure (POVM), that is, by a set {Ey, E», ..., E,} of operators satisfying the conditions E; > 0
and Z?:I E; =1. In this case, there exist some measurement operators {A, A»,...A,} such that
E;= A;A j- The probability to obtain the j-th outcome when measuring a quantum state o is
pj=1tr(oE;), and the j-th post-measurement state is 0, = ple jQAjf.

If 1), W2), .. )} is a tight frame, then {Ey = 1)1l E2 = o )Xoal, ... En = W) (Wnl} is
a POVM, and conversely, if all the elements of a POVM {E}, E», ..., E,,} are rank-one operators,
E; = |y )|, then {ly1), [2), ..., )} is a tight frame. By using this identification, the tight
frames can be regarded as a particular case of POVMs. So, a POVM-based version of coherence
can be defined in the case of any tight frame.

According to the Naimark theorem, by embedding the Hilbert H of the quantum system
into a higher-dimensional Hilbert space H’, every POVM {E}, E, ..., E,} can be extended to a
projective measurement {I1;, 15, ..., IT,} on H’ satisfying the conditions Z;?ZI ITj =g, H% =1I;
and IT;IT; = O for j# k. Naimark extension is not unique. The most general way is via a direct
sum by requering [8, 9]

tr(o E;) =tr((o ® O)I1)), forany je{l,2,..,n}, 74)

where 0 represents the zero matrix of dimension dim H’—dim H.
For example, the tight frame (45),namely

3 _L _L
%={|wo>=( \/: ],w:( hG ],|w2>=( P ]} (75)
0 V2 V2

identified with the POVM {Eg = [0 YWol, E1 = W1 X1, E2 = W2 ){»|} on C? admits the Naimark
extension to the projective measurement {ITy =[¥o)(Pol, I} =¥ ){¥1], I =[¥2){¥>|}, where

1 1
2 V6 R
B=21W)=| o |.1¥0=| 5 |.M¥=| -5 (76)
n. 1 1
V3 Vi W

13



is an orthonormal basis in C*. One can directly check that

W jlolri) = (¥ jlo®0¥),

77
t(oE;) = tr((0®O)IL)), a7
for any j, k{0, 1,2}, and any quantum states
o 0 2o oo O
Q:( 00 &0l ) and 0®0=| 010 ou O] (78)
O10 On 0 0 0

In the general case [8, 9], for a tight frame F = {|/1), /2), ..., [¥,)} in C¢, identified with the
POVM (E| = [y Y|, E2 = ¥2)W2l, ..., En = [, )W}, we obtain a Naimark extension on C" by
choosing |¢1), |¢2), ..., o) in C" such that B={|¥;), [¥2), ..., |¥,)}, where

lej)
is an orthonormal basis in C”. In this case, {IT; = [¥{ )}{(W1], I, = [P X2, ..., [T, = [V, ){P,|} is a
projective measurement on C", and we have
tr((e@®0);) = (¥ jlo®O0IY ;) = (¥ jloly ;) = tr(oE ) (80)

and the more general relation

¥ )= le) = ('W), (79)

0
(‘PjIQGBOI‘I’k>=(<l/’j| (%‘I)(g O)(:Z}i;)=(%|@|¢’k>, (81)
for any j,ke{l,2,...,n}, and any quantum state
on =+ ©o0a 0 - 0
o v O o o0 0
Q:[... ] and 0®0= O Qdd . (82)
on o ow 0 - 0 0 - 0
0 0 0 0
Particularly, we have
d d
~(0)= — - == P lo® 0P 83
Cy@)= > Kujlowl=— > (¥ lo@01¥i)l, (83)

j#k J#k
that is, the frame-dependent coherence of o coincides (up to the multiplicative constant d/n) with
the basis-dependent ¢;- norm of coherence of o®0, in a Naimark extension. If we identify C¢ to a
subspace of C" via the map C? > C":)x) - |x)®|0), then the frame § is the orthogonal projection
of the orthonormal basis B.

9. Frame-dependent coherence of the states of a composite quantum system

The definition of the frame-dependent coherence can be extended in the usual way to com-
posite quantum systems. If H,, H, are two Hibert spaces, dimH, = ds, dimH, = dg, &, =
{lo1)s l@adis s ln, ), }is a frame of H, and &, ={l@1),, l@2),s -+ [@n, )} is a frame of H,, then

DD e piod =D e ke @D ko, el =T (84)
=1 k=1
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Figure 5: Frame coherence of Bell states: a) ¥, b) W2, ¢) ¥3, d) ¥4 forne(3,4,5,...,30}.

that is, { o) =), ®ler), | 1<j<na, 1<k<ng}is atight frame in H, ®H,. The coherence of
a state o of the composite system with respect to this tight frame is

dsdp
L2 ) Kesedolengol (85)

ATB (%m0

Cs3,.5,(0)=

In the case of a system of two qubits, we can choose §, = §, =&, defined by (34).
For example, as concern the Bell states:
- the coherence of ¥, = ‘/Li(|00) +]11)) is (see Fig. 5a)

8 2(j - k) 2(m - O)m
Cs,.5,(P1X¥1h=— cos =7 —— cos — ‘ : (86)
(jk)#(m,0)
- the coherence of ¥, = %UOO) —|11)) is (see Fig. 5b)
8 2(j+ k) 2m+ On
Cx,.5, (¥ (P2 = — Z cos 2T o 2 ‘ ; (87)
n* n n
(J)#(m,L)
- the coherence of W53 = %(IOI) + |10)) is (see Fig. 5¢)
8 2+ . 2m+On
Croiss (W)W = — sin 2O i 207, (88)
(:k)#(m, )
- the coherence of W4 = %(|Ol) —110)) is (see Fig. 5d)
8 . 2(-kr . 2m-Orn
Cs,.5,(Wa)(Yah=— sin =7 —— sin — . (89)

(Gk)#(m.0)



The numerical data presented in Fig. 5 suggest that the coherence of ¥ and ¥, as well as
of W3 and Wy, is the same. Again, for n large enough, the coherence is almost independent on n,
and can be regarded as a frame-independent coherence.

10. Concluding remarks

In the particular case when the POVM corresponds to a tight frame, the POVM-based ¢;-
norm of coherence of a quantum state can be defined similar to the basis-dependent £;-norm of
coherence, without the use of a Naimark extension. The frame-dependent coherence defined in
this way offers several advantages:

- a more accurate description than the basis-dependent description;

- a definition simpler than the definition used in the case when the frame is regarded as a
POVM,;

- the possibility to use a frame containing two or more orthogonal bases;

- the possibility to investigate in more details how the basis-dependent coherence changes
when we pass from one basis to another;

- it is more adequate when we have to compare the coherence of two quantum states;

- in order to measure the coherence, it offers the possibility to choose more experimentally
accessible observables;

- it is less sensitive to the frame change than the basis-dependent coherence under the basis
change

- in the case of qubit or multi-qubit, it is possible to define a frame-invariant coherence as
the value (see Fig.1) of the coherence with respect to the regular polygonal frame (34)
obtained for a large value of n.

It is known [7] that an alternative definition of the basis-dependent coherence can be obtained
by choosing an orthonormal basis in the real Hilbert space A(H) of Hermitian operators instead
of choosing an orthonormal basis in H. Particularly, the coefficients of the representation of o
in the orthonormal basis of displaced parity operators is the Wigner function of o. The presented
frame-dependent version of the coherence can be extended in the following way. By starting
from any frame in 4 we can construct [17] a tight frame in A(H). The coefficients of the
standard representation of o in such a frame can be regarded as a more general version of the
Wigner function [17], and used in the investigation of the coherence of p.
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