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Abstract

The tight frames can be regarded as a particular case of POVMs (positive operator-valued mea-
sures describing generalized measurements), namely the case when all the operators are rank-
one. Each orthonormal basis is a tight frame, and every tight frame, after the embedding into a
higher-dimensional space, is the orthogonal projection of an orthonormal basis. There exist sev-
eral POVM-based definitions of coherence, and they are well-investigated. Our aim is to identify
properties specific to the particular case of tight frames, and to look for some applications. All
the POVM-based definitions use a Naimark extension. The frame-dependent coherence can be
regarded as a particular case of POVM-based coherence, but it can be defined directly, with-
out to use a Naimark extension. Its definition is a direct generalization of the basis-dependent
`1-norm of coherence, and it offers a more accurate description because we can use a frame con-
taining several orthogonal bases. A frame-invariant definition of coherence for qubit systems is
presented.

Keywords: quantum state, coherence, tight frame

1. Introduction

Coherence is a fundamental property of quantum states arising from the superposition prin-
ciple, but its measurement is ambiguous. Estimation of coherence does not have a universal
value. In the basis-dependent case, the value of the coherence of a quantum state depends on the
basis in which it is measured. This has been a point of concern, and there exist several attempts
[1, 2, 3, 4, 5, 6, 7] to remove this ambiguity. A basis-independent definition has been obtained
[4, 5] by replacing the set of incoherent states by the set containing only the maximally mixed
state. Other attempts use optimal bases [6], quasiprobabilities [7] or POVMs [8, 9].

Our aim is to present in more details a definition of coherence, we call frame-dependent
coherence, which can be regarded simultaneously either as a direct generalization of basis-
dependent coherence or as a particular case for POVM-based coherence. The use of frame-
dependent coherence is not an absolute way to quantify the coherence, but the dependence on
the preferred frame is not as strong as in the case of basis-dependent coherence.

In a finite-dimensional Hilbert space, an orthonormal basis is a system of orthogonal unit
vectors satisfying the resolution of the identity, that is, such that the sum of the corresponding
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orthogonal projectors is the identity operator. A tight frame is a system of vectors satisfying the
resolution of the identity. In the case of a tight frame, it is not necessary the vectors to be of unit
norm or orthogonal. More than that, a frame can contain the null vector and identical vectors.

Any vector of the Hilbert space can be represented as a linear combination of the vectors of a
tight frame, but generally, the representation is not unique. Nevertheless, among all the possible
representations, there exists a standard one, defined by using the resolution of the identity satis-
fied by the vectors of the tight frame. Similar to the case of an orthonormal basis, a matrix can be
associated to a linear operator with respect to a tight frame. The `1-norm of coherence we use,
similar to that used in basis-dependent case [1, 2], is the sum of the modulus of the off-diagonal
elements of the density matrix.

2. Finite tight frames

Let (H , 〈., .〉) be a d-dimensional complex Hilbert space, that is, a complex vector space H
considered together with a scalar product H×H → C : (x, y) 7→ 〈x, y〉 satisfying the conditions
〈x, αy+βz〉 = α〈x, y〉+β〈x, z〉 and 〈x, y〉 = 〈y, x〉 for any x, y, z ∈ H , α, β ∈ C, and the condition
〈x, x〉>0 for any x,0. The spaceH admits several equivalent representations:

• Standard representation

H≡Cd = { x= (x1, x2, ..., xd) | xk ∈C } , 〈x, y〉=
d∑

k=1

x̄k yk ; (1)

• Dirac’s representation as a space of column matrices

H≡

 |x〉=


x1
x2
...

xd


∣∣∣∣∣∣∣∣∣∣ xk ∈C

, 〈x, y〉≡〈x|y〉= (x̄1 x̄2 ... x̄d)


y1
y2
...

yd

 , (2)

where 〈x|= (x̄1 x̄2 ... x̄d) is the “bra” matrix corresponding to the “ket” |x〉;

• Representation as a space of functions, defined on a set with d elements

H≡{ψ : {1, 2, ..., d} →C } , 〈ϕ, ψ〉=

d∑
k=1

ϕ(k)ψ(k), (3)

or

H≡{ψ : {−s,−s+1, ..., s− 1, s} →C } , 〈ϕ, ψ〉=

s∑
k=−s

ϕ(k)ψ(k), (4)

in the case of odd d =2s+1.

Depending on the considered application, one representation may offer more formal advantages
than the others. In each case, we try to choose the most advantageous of them. For example, for
any a, b∈H , the formula A= |a〉〈b| defines the linear operator

A :H →H , A|x〉= |a〉〈b|x〉 (5)
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described by the matrix

A=


a1
a2
...

ad

 (b̄1 b̄2 ... b̄d)=


a1b̄1 a1b̄2 · · · a1b̄d

a2b̄1 a2b̄2 · · · a2b̄d
...

...
. . .

...
adb̄1 adb̄2 · · · adb̄d

 . (6)

Definition 1. A set of vectors B= {|ψ1〉, |ψ2〉, ... , |ψd〉}, considered in this order, is an orthonor-
mal basis inH if the following two conditions are satisfied:

〈ψ j|ψk〉=δ jk and
d∑

k=1

|ψk〉〈ψk |=I, (7)

where I :H →H , I|ψ〉= |ψ〉 is the identity operator, and

δ jk =

{
1 for j=k,
0 for j,k. (8)

Any linear operator A : H → H admits the standard representation

A ≡ IAI=
d∑

j,k=1
|ψ j〉〈ψ j|A|ψk〉〈ψk |=

d∑
j,k=1
〈ψ j|A|ψk〉 |ψ j〉〈ψk |. (9)

where

A=


〈ψ1|A|ψ1〉 〈ψ1|A|ψ2〉 · · · 〈ψ1|A|ψd〉

〈ψ2|A|ψ1〉 〈ψ2|A|ψ2〉 · · · 〈ψ2|A|ψd〉
...

...
. . .

...
〈ψd |A|ψ1〉 〈ψd |A|ψ2〉 · · · 〈ψd |A|ψd〉

 . (10)

is the matrix of A in the basis {|ψ1〉, |ψ2〉, ... , |ψd〉}.

Definition 2. A set of vectors F = {|ϕ1〉, |ϕ2〉, ... , |ϕn〉}, considered in this order, is a tight frame
inH if the following single condition is satisfied [10, 11]:

n∑
k=1

|ϕk〉〈ϕk |=I. (11)

Any orthonormal basis is a tight frame. Generally, a tight frame contains more vectors than the
dimension of the space, and the representation of a vector as a linear combination of the elements
of such a tight frame is not unique. Any element ψ∈H admits the standard representation

|ψ〉 ≡ I|ψ〉=
n∑

k=1

|ϕk〉〈ϕk |ψ〉=

n∑
k=1

〈ϕk |ψ〉 |ϕk〉 (12)

as a linear combination of |ϕ1〉, |ϕ2〉, ... , |ϕn〉. This representation is a privileged one: for any
αk ∈C such that

|ψ〉=

n∑
k=1

αk |ϕk〉 we have
n∑

k=1

|αk |
2 ≥

n∑
k=1

|〈ϕk |ψ〉|
2. (13)
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For example, in the caseH =C2, the vectors

|ϕ0〉=


√

2
3

0

 , |ϕ1〉=

 − 1
√

6
1
√

2

 , |ϕ2〉=

 − 1
√

6

− 1
√

2

 , (14)

satisfying the relation |ϕ0〉+|ϕ1〉+|ϕ2〉=0, form a tight frame in C2,

|ϕ0〉〈ϕ0|+|ϕ1〉〈ϕ1|+|ϕ2〉〈ϕ2|=

(
1 0
0 1

)
, (15)

and for any |ψ〉∈C2 and any λ∈C, we have

|ψ〉=
2∑

k=0
|ϕk〉〈ϕk |ψ〉=

2∑
k=0
|ϕk〉(〈ϕk |ψ〉+λ),

2∑
k=0
|〈ϕk |ψ〉+λ|

2 =
2∑

k=0
|〈ϕk |ψ〉|

2+|λ|2≥
2∑

k=0
|〈ϕk |ψ〉|

2.
. (16)

A frame can contain the null vector or identical vectors. For example,
 1

0

,  0

1

,  0

0

 ,

 1

0

,  0

1

,  0

0

,  0

0

 ,

 1
√

2

0

,  1
√

2

0

,  0
1
√

2

,  0
1
√

2


 (17)

are tight frames in C2. Any linear operator A :H→H admits the standard representation

A ≡ IAI=
n∑

j,k=1
|ϕ j〉〈ϕ j|A|ϕk〉〈ϕk |=

n∑
j,k=1
〈ϕ j|A|ϕk〉 |ϕ j〉〈ϕk |. (18)

where

A=


〈ϕ1|A|ϕ1〉 〈ϕ1|A|ϕ2〉 · · · 〈ϕ1|A|ϕn〉

〈ϕ2|A|ϕ1〉 〈ϕ2|A|ϕ2〉 · · · 〈ϕ2|A|ϕn〉
...

...
. . .

...
〈ϕn|A|ϕ1〉 〈ϕn|A|ϕ2〉 · · · 〈ϕn|A|ϕn〉

 . (19)

is the matrix of A in the frame {|ϕ1〉, |ϕ2〉, ... , |ϕn〉}. If A is Hermitian, A= A†, then

〈ϕ j|A|ϕk〉≡〈ϕ j, Aϕk〉= 〈Aϕ j, ϕk〉= 〈ϕk, Aϕ j〉≡〈ϕk |A|ϕ j〉. (20)

As concerne the trace of A, we have

tr A= tr(IA)= tr(
n∑

k=1

|ϕk〉〈ϕk |A)=

n∑
k=1

tr(|ϕk〉〈ϕk |A)=

n∑
k=1

〈ϕk |A|ϕk〉. (21)

If F = { |ϕ1〉, |ϕ2〉, ... , |ϕn〉} is a tight frame and U :H→H a unitary transform, then

n∑
k=1

U |ϕk〉〈ϕk |U†=U
n∑

k=1

|ϕk〉〈ϕk |U†=UIU†=I, (22)

that is, UF = {U |ϕ1〉, U |ϕ2〉, ... , U |ϕn〉} is also a tight frame.
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3. Frame-dependent coherence of a quantum state

A pure state of a quantum system with Hilbert spaceH (we consider only the finite-dimensional
case), is described by a normed element ψ ∈ H . The corresponding orthogonal projector %ψ =

|ψ〉〈ψ| is self-adjoint (also called Hermitian), %ψ ≥ 0 (its eigenvalues 1 and 0 are non-negative)
and tr %ψ=1 (sum of eigenvalues is 1).

The self-adjoint operators % :H→H satisfying the conditions %≥0 (all eigenvalues are non-
negative) and tr % = 1 (sum of eigenvalues is 1) are called density operators and they describe
generalized states of the quantum system. For any density operator %, in the Hilbert space H ,
there exists an orthonormal basis B= {|η1〉, |η2〉, ... , |ηd〉} containing only eigenvectors of % and
corresponding to non-negative eigenvalues λ1, λ2, ...., λd with

∑d
k=1 λk = 1. Thus, % admits the

spectral resolution

%=

d∑
k=1

λk |ηk〉〈ηk |, (23)

that is, % is a statistical mixture of the pure states η1, η2, ... , ηd with the probabilities λ1, λ2, ...., λd.

Definition 3. Let B= {|ψ1〉, |ψ2〉, ... , |ψd〉} be an orthonormal basis of H . The basis-dependent
`1-norm of coherence related to B of a quantum state % :H→H is [1, 2]

CB(%)=
∑
j,k

|〈ψ j|%|ψk〉|=2
∑
j<k

|〈ψ j|%|ψk〉|. (24)

Definition 4. Let F= {|ϕ1〉, |ϕ2〉, ... , |ϕn〉} be a tight frame ofH . The frame-dependent coherence
related to F of a quantum state % :H→H is

CF(%)= d
n

∑
j,k

|〈ϕ j|%|ϕk〉|=2 d
n

n−1∑
j=1

n∑
k= j+1

|〈ϕ j|%|ϕk〉|. (25)

Frame-dependent coherence is a natural extension for basis-dependent coherence. If the used
tight frame is an orthonormal basis, then the corresponding frame-dependent coherence coincides
with the usual basis-dependent `1- norm of coherence.

Similar to the case of an orthonormal basis [3], the matrix elements 〈ϕ j|%|ϕk〉 of a density
operator % can be expressed in terms of the mean values of the observables

Wjk =


|ϕ j〉〈ϕ j| if j=k
1
2 (|ϕ j〉〈ϕk |+|ϕk〉〈ϕ j|) if j>k
i
2 (|ϕ j〉〈ϕk |−|ϕk〉〈ϕ j|) if j<k.

(26)

For example, for j<k, we have

〈ϕ j|%|ϕk〉= tr(% |ϕk〉〈ϕ j)|= 〈Wk j〉%+i〈Wjk〉%. (27)

and consequently

CF(%)=2 d
n

n−1∑
j=1

n∑
k= j+1

|〈Wk j〉%+i〈Wjk〉%|. (28)

Generally, in the case of a frame, the elements |ϕk〉 and hence the operators Wjk are not indepen-
dent. Consequently, in order to obtain the frame-dependent coherence of %, we have to measure
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the mean values for only d2 of the n2 operators Wjk. In addition, we have the possibility to choose
the most experimentally accessible.
Theorem 1. Frame-dependent coherence has the properties:

• Non-negativity: CF(%)≥0;

• Convexity: CF(
∑̀

m=1
pm %m)≤

∑̀
m=1

pm CF(%m);

• Unitarily-invariant: CUF(U%U†)=CF(%);

where pm ≥ 0 are such that
∑̀

m=1
pm =1, and U :H→H is an arbitrary unitary operator.

Proof. We have

CF(
∑̀

m=1
pm %m)= d

n
∑
j,k
|〈ϕ j|

∑̀
m=1

pm %m|ϕk〉|=
d
n

∑
j,k
|
∑̀

m=1
pm〈ϕ j|%m|ϕk〉|

≤ d
n

∑
j,k

∑̀
m=1

pm|〈ϕ j|%m|ϕk〉|=
∑̀

m=1
pm

d
n

∑
j,k
|〈ϕ j|%m|ϕk〉|=

∑̀
m=1

pm CF(%m),

and
CUF(U%U†)= d

n

∑
j,k

|〈ϕ j|U†U%U†U |ϕk〉|=
d
n

∑
j,k

|〈ϕ j|%|ϕk〉|=CF(%).

4. Some examples

4.1. Coherence of some qubit quantum states
In Dirac notation, the qubit Hilbert space is

C2 =

{
|ψ〉=

(
α
β

) ∣∣∣∣∣∣ α, β∈C
}
, (29)

usually described by using the canonical (computational) basis{
|0〉=

(
1
0

)
, |1〉=

(
0
1

) }
. (30)

a) The coherence of the pure quantum state

%0 = |0〉〈0|=
(

1 0

0 0

)
(31)

with respect to the orthonormal basis

Bλ=

{
|ψ1〉=

(
cos λ
sin λ

)
, |ψ2〉=

(
− sin λ

cos λ

) }
, (32)

depending on a parameter λ∈ [0, 2π), is

CBλ (%0)=2|〈ψ1|%0|ψ2〉|=
1
2
| sin 2λ|, (33)
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and the coherence with respect to the regular polygonal frame

Fn =

{
|ϕk〉=

√
2
n

(
cos 2kπ

n

sin 2kπ
n

) ∣∣∣∣∣∣ k∈{0, 1, 2, ..., n−1}
}

(34)

where n∈{3, 4, 5, ...}, is (see Fig.1a)

CFn (%0)=
2
n

∑
j,k

|〈ϕ j|%0|ϕk〉|=
4
n2

∑
j,k

∣∣∣∣∣cos
2 jπ
n

cos
2kπ
n

∣∣∣∣∣ . (35)

b) The coherence of the maximally mixed state

%1 =

( 1
2 0

0 1
2

)
(36)

with respect to the orthonormal basis Bλ is

CBλ (%1)=2|〈ψ1|%1|ψ2〉|=0, (37)

and the coherence with respect to the regular polygonal frame Fn is (see Fig.1b)

CFn (%1)=
2
n

∑
j,k

|〈ϕ j|%1|ϕk〉|=
2
n2

∑
j,k

∣∣∣∣∣cos
2( j−k)π

n

∣∣∣∣∣ . (38)

c) The coherence of the quantum state

%2 =

( 1
4 0

0 3
4

)
(39)

with respect to the orthonormal basis Bλ is

CBλ (%2)=2|〈ψ1|%2|ψ2〉|=
1
2
| sin 2λ|, (40)

and the coherence with respect to the regular polygonal frame Fn is (see Fig.1c)

CFn (%2)=
1
n2

∑
j,k

∣∣∣∣∣cos
2 jπ
n

cos
2kπ
n

+3 sin
2 jπ
n

sin
2kπ
n

∣∣∣∣∣ . (41)

d) The coherence of the quantum state

%3 =

( 1
2 − 1

4

− 1
4

1
2

)
(42)

with respect to the orthonormal basis Bλ is

CBλ (%3)=2|〈ψ1|%3|ψ2〉|=
1
2
| cos 2λ|, (43)

and the coherence with respect to the regular polygonal frame Fn is (see Fig.1d)

CFn (%3)=
2
n

∑
j,k

|〈ϕ j|%3|ϕk〉|=
1
n2

∑
j,k

∣∣∣∣∣2 cos
2( j−k)π

n
−sin

2( j+k)π
n

∣∣∣∣∣ . (44)
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Figure 1: Frame coherence: a) CFn (%0), b) CFn (%1), c) CFn (%2), d) CFn (%3) for n∈{3, 4, 5, ..., 50}.

One can remark that, for large n, the frame coherence tends to be independent on n, and can be
regarded as a kind of frame-independent coherence.
e) The coherence of any quantum state % with respect to the frame

F3 =

{
|ϕ0〉=

√
2
3

(
1

0

)
, |ϕ1〉=

√
2
3

(
− 1

2
√

3
2

)
, |ϕ2〉=

√
2
3

(
− 1

2

−
√

3
2

)}
; (45)

is non-null. Indeed, CF3 (%)= 4
3 (|〈ϕ0|%|ϕ1〉|+|〈ϕ0|%|ϕ2〉|+|〈ϕ1|%|ϕ2〉|) and

CF3 (%)=0 ⇔


0= |〈ϕ0|%|ϕ1〉|

0= |〈ϕ0|%|ϕ2〉|= |〈ϕ0|%|ϕ0〉|+|〈ϕ0|%|ϕ1〉|

0= |〈ϕ1|%|ϕ2〉|= |〈ϕ1|%|ϕ0〉|+|〈ϕ1|%|ϕ1〉|.
⇔ %=0.

The matrix of an arbitrary quantum state, in the canonical basis, can be represented as

%=

(
a b eiθ

b e−iθ 1−a

)
, where

0≤a≤1, 0≤θ<2π

−
√

a(1−a)≤b≤
√

a(1−a).
(46)

Figure 2 presents the coherence CF3 (%) in the particular cases θ=0 and θ= π
3 .

4.2. Coherence of a qutrit quantum state

In the case of a qutrit described by the Hilbert space C3, the coherence of the quantum state

%=
1
6

 1 0 0
0 2 0
0 0 3

 (47)
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Figure 2: Frame coherence: CF3 (%) of the state (46) in the cases θ=0 and θ= π
3 .

is:

CBcan (%)=0 if we choose the basis Bcan =

|ψ1〉=

 1
0
0

, |ψ2〉=

 0
1
0

, |ψ3〉=

 0
0
1


; (48)

CB∗can (%)=0.577 if we choose the corresponding complementary basis

B
∗
can =

F†|ψ1〉=
1
√

3

 1
1
1

, F†|ψ2〉=
1
√

3


1
e

2πi
3

e−
2πi
3

, F†|ψ3〉=
1
√

3


1
e−

2πi
3

e
2πi
3


; (49)

CF(%)=1.010 if we choose the frame containing both B3 and B∗3,

F=

{
1
√

2
|ψ1〉,

1
√

2
|ψ2〉,

1
√

2
|ψ3〉,

1
√

2
F†|ψ1〉,

1
√

2
F†|ψ2〉,

1
√

2
F†|ψ3〉

}
; (50)

CFtetra (%)=0.75 if we choose the tetrahedral frame [12, 13]

Ftetra =

1
2

−1
1
1

, 1
2

 1
−1

1

, 1
2

 1
1
−1

, 1
2

−1
−1
−1


 ; (51)

CFico (%)=1.135 if we choose the icosahedral frame (regular icosahedron) [12, 13]

Fico =

1
η

1
τ

0

 , 1
η

−1
τ

0

 , 1
η

−τ0
1

 , 1
η

 0
−1
τ

 , 1
η

τ0
1

 , 1
η

0
1
τ


 , (52)

9



0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

2.0

Figure 3: Change of basis: variation of the basis-dependent coherence.

where τ= 1+
√

5
2 , η=

√
5+
√

5, F :C3→C3,

F =
1
√

3


1 1 1

1 e−
2πi
3 e

2πi
3

1 e
2πi
3 e−

2πi
3

 (53)

is the Fourier transform, and F† its adjoint. Larger icosahedral frames can be obtained by includ-
ing vectors corresponding to the vertices of certain dodecahedrons, icosidodecahedrons and by
using unitary transformations.

5. Variation of the basis-dependent coherence from one basis to another one

If B = {|ψ1〉, |ψ2〉, ... , |ψd〉} and B′ = {|ϕ1〉, |ϕ2〉, ... , |ϕd〉} are two orthonormal bases in H ,
then the tight frame

F(t)= {
√

1−t|ψ1〉,
√

1−t|ψ2〉, ... ,
√

1−t|ψd〉,
√

t|ϕ1〉,
√

t|ϕ2〉, ... ,
√

t|ϕd〉} (54)

depending on t∈ [0, 1] can be regarded as a continuous deformation of B to B′. We have

CF(t)(%)=
1
2

(1−t)
∑
j<k

|〈ψ j|%|ψk〉|+
1
2

√
t(1−t)

d∑
j=1

d∑
k=1

|〈ψ j|%|ϕk〉|+
1
2

t
∑
j<k

|〈ϕ j|%|ϕk〉|, (55)

and one can remark that

F(0)= {|ψ1〉, |ψ2〉, ... , |ψd〉, 0, 0, ... , 0} ⇒ CB(%)=2CF(0)(%), (56)

F(1)= {0, 0, ... , 0, |ϕ1〉, |ϕ2〉, ... , |ϕd〉} ⇒ CB′ (%)=2CF(1)(%), (57)

for any quantum state %.
So, we can connect two orthonormal bases by a family of tight frames and investigate explic-

itly how the coherence changes when we go from one orthonormal basis to another. In Fig. 3,
we describe how the coherence of the state (47) changes when we pass from the canonical basis
Bcan to the complementary basis B∗can.

10



6. Incoherent states

Except for a class of particular frames, in the case of frame-dependent coherence, the set of
all the incoherent states I is empty. The frame-dependent version of coherence of a quantum
state % is defined directy by using the matrix of % in the chosen frame, without the need to use
the set I of all the incoherent states.

If the Hilbert space H is the orthogonal sum H = H1 ⊕ H2, and if {|ψ1〉, |ψ2〉, ..., |ψn〉}

is an orthonormal basis in H1 and if {|ϕ1〉, |ϕ2〉, ..., |ϕm〉} is a tight frame in H2, then F =

{|ψ1〉, |ψ2〉, ..., |ψn〉, |ϕ1〉, |ϕ2〉, ..., |ϕm〉} is a tight frame inH ,

n∑
j=1

|ψ j〉〈ψ j|+

m∑
k=1

|ϕk〉〈ϕk |=IH . (58)

In this case, any quantum state % of the form

%=

n∑
j=1

λ j|ψ j〉〈ψ j| (59)

with λ j ≥ 0 and
∑n

j=1 λ j = 1 is incoherent because 〈ψ j|%|ψk〉 = 0 for j , k, and 〈ψ j|%|ϕk〉 =

〈ϕ j|%|ψk〉= 〈ϕ j|%|ϕk〉=0 for all j, k.
For example, with respect to the frame

F=


 1

0
0

,
 0

1
0

, 1
2

 0
0
1

, √3

2

 0
0
1


 (60)

of C3, the quantum states

%(α)=


α 0 0
0 1−α 0
0 0 0

 , where α∈ [0, 1], (61)

are incoherent states, that is CF(%(α))=0.

7. Coherence with respect to a system of coherent states

In the case of a quantum system described by the odd-dimensional Hilbert space

H = {ψ : {−s,−s+1, ..., s−1, s} −→ C}, 〈ϕ, ψ〉=

s∑
k=−s

ϕ(k)ψ(k) (62)

of dimension d = 2s + 1, the discrete version of the system of canonical coherent states is a
remarkable tight frame. Each function ψ∈H is regarded as the restriction to {−s,−s+1, ..., s−1, s}
of a periodic function ψ :Z −→ C of period d.

For any κ∈ (0,∞), the function

gκ : {−s,−s+1, ..., s−1, s}→R, gκ(n)=

∞∑
m=−∞

Exp
[
−
κπ

d
(n + md)2

]
(63)
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Figure 4: Discrete vacuum state: discrete Gaussian g in the case d =31.

represents [14, 15, 16] a discrete version of the Gaussian function

R→R : q 7→ Exp
[
−
κπ

h
q2

]
(64)

and satisfies the relation [14, 15, 16, 17]

Fgκ= 1
√
κ
g 1

κ
, (65)

where F :H→H : ψ 7→Fψ is the Fourier transform

Fψ(k)= 1
√

d

s∑
j=−s

Exp
[
−

2πi
d

k j
]
ψ( j). (66)

Particularly, the normalized function (see Fig.4)

|g〉=
1
||g1||

|g1〉, (67)

satisfying F|g〉= |g〉, can be regarded as a discrete version of the vacuum state.
The d2 discrete coherent states [14, 15, 16]

| j, k〉=
1
√

d
D( j, k)|g〉, where j, k∈{−s,−s+1, ..., s−1, s}, (68)

defined by using the displacement operators D( j, k) :H→H ,

D( j, k)ψ(n) = Exp
[
−
πi
d

k j
]

Exp
[
2πi
d

kn
]
ψ(n− j), (69)

form a tight frame F inH ,
s∑

j,k=−s

| j, k〉〈 j, k|=I. (70)

The coherence of a state % with respect to this tight frame is

CF(%)=
1
d

∑
( j,k),(n,m)

|〈 j, k|%|n,m〉|. (71)
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Because F| j, k〉= |−k, j〉, we have

CF(%)=
1
d

∑
( j,k),(n,m)

|〈−k, j|%|−m, n〉|=
1
d

∑
( j,k),(n,m)

|〈 j, k|F†%F|n,m〉|=CF(F†%F) , (72)

that is, any state % and its Fourier transform F†%F have the same coherence.
In the three-dimensional case C3≡{ψ : {−1, 0, 1} −→ C}, the vacuum state is

g : {−1, 0, 1} −→ C, g(0)= 1
√

2

√
1+ 1

√
3
, g(−1)= 1

2

√
1− 1

√
3

=g(1). (73)

For example, the coherence of the quantum state (47) is CF(%)=1.259.

8. Frame-dependent versus POVM-based coherence

A general measurement of a quantum system is described by a positive operator valued mea-
sure (POVM), that is, by a set {E1, E2, ..., En} of operators satisfying the conditions E j ≥ 0
and

∑n
j=1 E j = I. In this case, there exist some measurement operators {A1, A2, ...An} such that

E j = A†j A j. The probability to obtain the j-th outcome when measuring a quantum state % is

p j = tr(%Ei), and the j-th post-measurement state is % j =
1
p j

A j%A†j .
If {|ψ1〉, |ψ2〉, ..., |ψn〉} is a tight frame, then {E1 = |ψ1〉〈ψ1|, E2 = |ψ2〉〈ψ2|, ..., En = |ψn〉〈ψn|} is

a POVM, and conversely, if all the elements of a POVM {E1, E2, ..., En} are rank-one operators,
E j = |ψ j〉〈ψ j|, then {|ψ1〉, |ψ2〉, ..., |ψn〉} is a tight frame. By using this identification, the tight
frames can be regarded as a particular case of POVMs. So, a POVM-based version of coherence
can be defined in the case of any tight frame.

According to the Naimark theorem, by embedding the Hilbert H of the quantum system
into a higher-dimensional Hilbert space H ′, every POVM {E1, E2, ..., En} can be extended to a
projective measurement {Π1,Π2, ...,Πn} on H ′ satisfying the conditions

∑n
j=1 Π j = IH ′ , Π2

j = Π j

and Π jΠk = 0 for j , k. Naimark extension is not unique. The most general way is via a direct
sum by requering [8, 9]

tr(% E j)= tr((% ⊕ 0)Π j), for any j∈{1, 2, ..., n}, (74)

where 0 represents the zero matrix of dimension dimH ′−dimH .
For example, the tight frame (45),namely

F3 =

|ψ0〉=


√

2
3

0

 , |ψ1〉=

 − 1
√

6
1
√

2

 , |ψ2〉=

 − 1
√

6
− 1
√

2


 (75)

identified with the POVM {E0 = |ψ0〉〈ψ0|, E1 = |ψ1〉〈ψ1|, E2 = |ψ2〉〈ψ2|} on C2 admits the Naimark
extension to the projective measurement {Π0 = |Ψ0〉〈Ψ0|,Π1 = |Ψ1〉〈Ψ1|,Π2 = |Ψ2〉〈Ψ2|}, where

B=

|Ψ0〉=


√

2
3

0
1
√

3

 , |Ψ1〉=


− 1
√

6
1
√

2
1
√

3

 , |Ψ2〉=


− 1
√

6

− 1
√

2
1
√

3


 (76)
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is an orthonormal basis in C3. One can directly check that

〈ψ j|%|ψk〉= 〈Ψ j|%⊕0|Ψk〉,
tr(%E j)= tr((%⊕0)Π j),

(77)

for any j, k∈{0, 1, 2}, and any quantum states

%=

(
%00 %01

%10 %11

)
and %⊕0=

 %00 %01 0
%10 %11 0

0 0 0

. (78)

In the general case [8, 9], for a tight frame F = {|ψ1〉, |ψ2〉, ..., |ψn〉} in Cd, identified with the
POVM {E1 = |ψ1〉〈ψ1|, E2 = |ψ2〉〈ψ2|, ..., En = |ψn〉〈ψn|}, we obtain a Naimark extension on Cn by
choosing |ϕ1〉, |ϕ2〉, ..., |ϕn〉 in Cn−d such that B= {|Ψ1〉, |Ψ2〉, ... , |Ψn〉}, where

|Ψ j〉= |ψ j〉⊕|ϕ j〉 ≡

(
|ψ j〉

|ϕ j〉

)
, (79)

is an orthonormal basis in Cn. In this case, {Π1 = |Ψ1〉〈Ψ1|,Π2 = |Ψ2〉〈Ψ2|, ...,Πn = |Ψn〉〈Ψn|} is a
projective measurement on Cn, and we have

tr((%⊕0)Π j)= 〈Ψ j|%⊕0|Ψ j〉= 〈ψ j|%|ψ j〉= tr(%E j) (80)

and the more general relation

〈Ψ j|%⊕0|Ψk〉=
(
〈ψ j| 〈ϕ j|

) ( % 0
0 0

) (
|ψk〉

|ϕk〉

)
= 〈ψ j|%|ψk〉, (81)

for any j, k∈{1, 2, ..., n}, and any quantum state

%=

 %11 · · · %1d

· · · · · · · · ·
%d1 · · · %dd

 and %⊕0=


%11 · · · %1d 0 · · · 0
· · · · · · · · · · · · · · · · · ·
%d1 · · · %dd 0 · · · 0

0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0


. (82)

Particularly, we have

CF(%)=
d
n

∑
j,k

|〈ψ j|%|ψk〉|=
d
n

∑
j,k

|〈Ψ j|%⊕0|Ψk〉|, (83)

that is, the frame-dependent coherence of % coincides (up to the multiplicative constant d/n) with
the basis-dependent `1- norm of coherence of %⊕0, in a Naimark extension. If we identify Cd to a
subspace of Cn via the map Cd→Cn : |x〉 7→|x〉⊕|0〉, then the frame F is the orthogonal projection
of the orthonormal basis B.

9. Frame-dependent coherence of the states of a composite quantum system

The definition of the frame-dependent coherence can be extended in the usual way to com-
posite quantum systems. If HA , HB are two Hibert spaces, dimHA = dA, dimHB = dB, FA =

{|ϕ1〉A , |ϕ2〉A , ... , |ϕnA〉A } is a frame ofHA and FB = {|ϕ1〉B , |ϕ2〉B , ... , |ϕnB〉B} is a frame ofHB , then
nA∑
j=1

nB∑
k=1

|ϕ jϕk〉〈ϕ jϕk |=

nA∑
j=1

|ϕ j〉A A〈ϕ j|⊗

nB∑
k=1

|ϕk〉B B〈ϕk |=I, (84)
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Figure 5: Frame coherence of Bell states: a) Ψ1, b) Ψ2, c) Ψ3, d) Ψ4 for n∈{3, 4, 5, ..., 30}.

that is, { |ϕ jϕk〉= |ϕ j〉A⊗|ϕk〉B | 1≤ j≤nA, 1≤k≤nB} is a tight frame inHA⊗HB . The coherence of
a state % of the composite system with respect to this tight frame is

CFA ,FB
(%)=

dA dB

nA nB

∑
( j,k),(m,`)

|〈ϕ jϕk |%|ϕmϕ`〉|. (85)

In the case of a system of two qubits, we can choose FA =FB =Fn, defined by (34).
For example, as concern the Bell states:

- the coherence of Ψ1 = 1
√

2
(|00〉 + |11〉) is (see Fig. 5a)

CFn,Fn (|Ψ1〉〈Ψ1|)=
8
n4

∑
( j,k),(m,`)

∣∣∣∣∣cos
2( j − k)π

n
cos

2(m − `)π
n

∣∣∣∣∣ ; (86)

- the coherence of Ψ2 = 1
√

2
(|00〉 − |11〉) is (see Fig. 5b)

CFn,Fn (|Ψ2〉〈Ψ2|)=
8
n4

∑
( j,k),(m,`)

∣∣∣∣∣cos
2( j + k)π

n
cos

2(m + `)π
n

∣∣∣∣∣ ; (87)

- the coherence of Ψ3 = 1
√

2
(|01〉 + |10〉) is (see Fig. 5c)

CFn,Fn (|Ψ3〉〈Ψ3|)=
8
n4

∑
( j,k),(m,`)

∣∣∣∣∣sin
2( j + k)π

n
sin

2(m + `)π
n

∣∣∣∣∣ ; (88)

- the coherence of Ψ4 = i
√

2
(|01〉 − |10〉) is (see Fig. 5d)

CFn,Fn (|Ψ4〉〈Ψ4|)=
8
n4

∑
( j,k),(m,`)

∣∣∣∣∣sin
2( j − k)π

n
sin

2(m − `)π
n

∣∣∣∣∣ . (89)
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The numerical data presented in Fig. 5 suggest that the coherence of Ψ1 and Ψ2, as well as
of Ψ3 and Ψ4, is the same. Again, for n large enough, the coherence is almost independent on n,
and can be regarded as a frame-independent coherence.

10. Concluding remarks

In the particular case when the POVM corresponds to a tight frame, the POVM-based `1-
norm of coherence of a quantum state can be defined similar to the basis-dependent `1-norm of
coherence, without the use of a Naimark extension. The frame-dependent coherence defined in
this way offers several advantages:

- a more accurate description than the basis-dependent description;

- a definition simpler than the definition used in the case when the frame is regarded as a
POVM;

- the possibility to use a frame containing two or more orthogonal bases;

- the possibility to investigate in more details how the basis-dependent coherence changes
when we pass from one basis to another;

- it is more adequate when we have to compare the coherence of two quantum states;

- in order to measure the coherence, it offers the possibility to choose more experimentally
accessible observables;

- it is less sensitive to the frame change than the basis-dependent coherence under the basis
change

- in the case of qubit or multi-qubit, it is possible to define a frame-invariant coherence as
the value (see Fig.1) of the coherence with respect to the regular polygonal frame (34)
obtained for a large value of n.

It is known [7] that an alternative definition of the basis-dependent coherence can be obtained
by choosing an orthonormal basis in the real Hilbert spaceA(H) of Hermitian operators instead
of choosing an orthonormal basis in H . Particularly, the coefficients of the representation of %
in the orthonormal basis of displaced parity operators is the Wigner function of %. The presented
frame-dependent version of the coherence can be extended in the following way. By starting
from any frame in H we can construct [17] a tight frame in A(H). The coefficients of the
standard representation of % in such a frame can be regarded as a more general version of the
Wigner function [17], and used in the investigation of the coherence of %.

References

[1] T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113 (2014) 140401.

[2] J. Chen, S. Grogan, N. Johnston, C.K. Li, S. Plosker, Phys. Rev. A 94 (2016) 042313.

[3] S. Mandal, M. Narozniak, C. Radhakrishnan, Z.Q. Jiao, X.M. Jin, T. Byrnes, Phys. Rev. Research 2 (2020) 013157.

[4] Z.H. Ma, J. Cui, Z. Cao, S.M.Fei, V. Vedral, T. Byrnes, C. Radhakrishnan, EPL125 (2019) 50005.

16



[5] C. Radhakrishnan, Z. Ding, F. Shi, J. Du, T. Byrnes, Ann. Phys 409 (2019) 167906.

[6] M.L. Hu, S.Q. Shen, H. Fan, Phys. Rev. A 96 (2017) 052309.

[7] J. Sperling, I.A. Walmsley, Phys. Rev. A 97 (2018) 062327.

[8] T. Decker, D. Janzing, M. Roetteler, J. Math. Phys. 46 (2005) 012104.

[9] F. Bischof , H. Kampermann, D. Bruß, Phys. Rev. Lett. 123 (2019) 110402.

[10] S.F.D. Waldron, An Introduction to Finite Tight Frames, Birkhauser Inc, Boston, 2018.

[11] O. Christensen, Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

[12] N. Cotfas, J.P. Gazeau, J. Phys. A: Math. Theor. 43 (2010) 193001.

[13] N. Cotfas, J. Phys. A: Math. Theor. 57 (2024) 395301.

[14] A. Vourdas, Rep. Prog. Phys. 67 (2004) 267.

[15] M. Ruzzi, J. Math. Phys. 47 (2006) 063507.

[16] N. Cotfas, J.P. Gazeau, A. Vourdas, J. Phys. A: Math. Theor. 44 (2011) 175303.

[17] N. Cotfas, Phys. Rev. A 107 (2023) 052215.

17


