Chapter 10

Elements of Complex Analysis

10.1 Complex numbers

10.1.1 The set of complex numbers

C=R+Ri={z=z+yi|z,yeR }
considered together with the addition
(z+yi)+ (@ +yi)=(@+2)+ (y+ )i
and multiplication by a real number
alz +yi) = ax + ayi

is a real vector space of dimension 2. The usual form of a complex number z = x+yi

represents its expansion in the basis {1, i}. The linear isomorphism
R? — C:(z,y) — z+ i
allows us to identify the two real vector spaces and leads to a natural geometric

interpretation of the complex numbers (the complex plane).

10.1.2 The relation i2 = —1 allows us to define an additional operation in C
(z +yi) (@' +y'1) = (22’ — yy/) + (a9 + ya')i.
called the multiplication of complex numbers. The set C considered together with

the addition and multiplication of complex numbers is a commutative field.

Particularly, any non-null complex number admits an inverse
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(2 +yi) ! = I e—yi oz 0y .
Yy _x+yi_x2+y2_m2+y2 x2+y2'
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Figure 10.1: Conjugatul unui numar complex

10.1.3 Definition. Let z = x 4 yi be a complex number.
The number Re z = z is called the real part of z.
The number Jm z = y is called the imaginary part of z.
The number zZ = z — yi is called the complex conjugate of z.

The number |z| = /22 + y? is called the modulus of z.

10.1.4 MATHEMATICA Relx+y I], Im[x+y I], Abs[x+y I], Conjugate[x+y I]

In[1]:=I —  Out[l]=1i In[5]:=Re[3+4 I] —  Out[5]=3
In[2]:=Sqrt[-4] —  Out[2]=2i In[6]:=Im[3+4 I] —  Out[6]=4
In[3]:=(3+2 I)"2 —  Out[3]=5+12i In[7]:=Abs[3+4 I] —  Out[7]=5
In[4]:=(3+2 I)/(5-I) +> Out[4]=3+1 In[8] :=Conjugate[3+4 I] +> Out[8]=3—4i

10.1.5 Proposition. The relations

21t 29 =21 2o 2122 = 21 22 (Zn) = (Z)n
2] = |2] |2]? = 2 2 () ==
%ezz# Jmz = 52 z=Rez+iTm 2.

are satisfied for any complex numbers zy, zo §i z.

Proof. These relations are direct consequences of the previous definition.

10.1.6 For any ¢, ¥ €R we have
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(cos @ +isin p)(cosp +isint) = (cos p cos Y — sin psin )

+i(cos @ sin vy + sin p cos ¥) = cos(p+1) + isin(p+1)).
By using Euler’s notation
el = cost +isint
the previous relation becomes

ol ol¥ — (P F¢)
10.1.7 For any non-null number z=x+yi there exists arg z € (—m, 7| such that

z = |z|(cos(arg z) + isin(arg z)) = |z| ¢! 8%

arg z

Figure 10.2: Modulus and the argument of a complex number.

The number arg z, called the principal value of the argument of z=x+yi, is

arctg? for x>0
m+arctg? for <0, y>0

argz = —m+arctg? for <0, y<0

vl

for =0, y>0

5 for 2=0, y<O.

10.1.8 MATHEMATICA Arglx+y I1, N[Arglx+y I1]
In[1] :=Arg[-1] —  Out[l]=r In[3] :=Arg[2+3 I] > Out[3]=ArcTan[2]
In[2]:=Arg[I"15] + Out[2]=—2 In[4]:=N[Arg[2+3 11,91 +> Out[4]=0.982793723

10.1.9 The function
arg : C* — (—m, 7]
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is discontinuous on the negative half line
(—00,0) ={ z | Rez<0, Imz=0}
because for x € (—o0,0) we have

lim arg(x + yi) = —7m and lim arg(z + yi) = 7.
Jinpy g(z + yi) lim g(z +yi)

| %Rzl

Figure 10.3: Relation among |z|, |Re z| and |Jm z|.

10.1.10 Proposition. For any compler number z = x + yi we have
] _
< Jetyi| < [zf + [yl
]
that 1is,

|Re 2|
< |z < [Rezf + [Tm 2],
|Jm z|

Proof. We have

o+ yi| = a2 +y? > Val = 2| [otyil =22+ y? >y =yl
and the inequality
Vat+y? <zl + |yl

is equivalent with the obvious relation

2® +y? < (af + [y])*.

10.1.11 Proposition. The mapping | | : C — R,

2| = o+ yi| = /a? + ¢

is a norm n the real vector space C, and d: C x C — R

d(z1,22) = |21 — 22| = \/(901 —22)% + (y1 — 12)?

is the corresponding distance.
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Demonstratie. For any complex number z = x + yi we have

2] =22 +y* >0

and

If o is a real number then

laz| = |(az) + (ay)il = \/(az)? + (ay)? = Ja2(a? +y?) = |a] |2].
For any z; = x1 + y1i and 29 = x5 + y21 we have

|21 + 22|2 =(zn1+2)(51+2)= |f<71|2 + |f<72|2 + 21220+ 21 22

= |Zl|2 + |22|2 + 2%Re (21 22) < |Zl|2 + |22|2 + 2|%2 (21 22)|

<z f? + |22]? + 2|21 22| = (J21] + |22])?

whence

|21 + 22| < |z1] + |22].

10.1.12 If we consider R? endowed with the usual norm

R — R, l(z,y)] = ya? + 92
(@)l = \Ja? +y? = |z +yi |

This means that the linear mapping

then

R — C: (z,y) — x+yi

is an isomorphism which allows us to identify the normed vector spaces (R2,|| ||)
and (C,| |). If we take into consideration only the structure of vector space, the

spaces (R2,]| ||) and (C, | |) differ only in the used notations. The distance

d(z1,22) = |21 — 22| = \/(331 —12)% + (Y1 — y2)?
between two numbers z; =x1+y1i and 23 =x2+ysi in the complex space correspond

to the distance between the corresponding points in the Euclidean plane (Figure
10.4)

d((@1,31), (@2,92)) = \/ (21 — 22)2 + (91 — )?
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I Z2

Figure 10.4: Distance between two points.

10.1.13 In the complex plane:

|21 — 22| = distance between z; and z9.
|z| = |z — 0| = distance between z and the origin.
Let a € C be a fixed point and r > 0. The set
Br(a)={z]| [z—al<r}

is called the (open) disk of center a and radius r (Figure 10.5 ).

B, (a)

Figure 10.5: The disk of center a and radius r.

10.1.14 Definition. We say that M CC is a bounded set if there
exist a€C and >0 such that M C B,(a).

10.1.15 Exercise. M is a bounded set if and only if there exists >0
such that |z| <r, for any z€ M.

10.1.16 Definition. A set D CC is called an open set if for any a€ D
there exists >0 such that B,(a) C D.
A set FFCC is called a closed set if C—F' is an open set.
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Figure 10.6: A bounded set.

@ By(a) D

Figure 10.7: An open set.

10.1.17 Example.
a) The open disk B;(0) is an open set.
b) The half-plane { z | Jm 2>0 } is an open set.
c¢) Any finite set F'CC is a closed set.
d) The half-plane { z | %e 2>0 } is a closed set.

10.1.18 Definition. A set K CC is called a compact set

if it is a closed and bounded set.

10.1.19 Exercise. Prouve that the relations

a) |z 2| = |zl]2]
b) [zl = |22l < |21 — 22
o) |tz -2l =20a) + 2]z

hold for any complex numbers z; and zs.
Solution. a) We have

(129 — y192)* + (z1y2 + 22y1)* = (23 + y}) (23 + v3).
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b) From
|z1| = |21 — 22 + 22| < |21 — 22| + |22], |z2| = |22 — 21 + 21| < |22 — 21| + |21
we get the relation
—lz1 — 22| < 21| — [22] < |21 — 22|
equivalent to
[ [z1] = [22] | < |21 — 22].
c¢) By direct computation we get

21+ 2 + |21 — 2 = (21 4+ 22) (21 + 22) + (21 — 22) (21 — 22) = 2|21 * + 2|22

10.2 Sequences of complex numbers

10.2.1 Definition. We say that the sequence (zy,),>0 converges to a and write

lim z, =a
n—oo

if

lim |z, —a|=0.
n—oo

10.2.2 From the relation

|zn — @

} < (@n + yad) — (@ + B1)| < |z — af + |y — O]
lyn — B

we get
limy, oo Tp = @
lim (x, +ypl) =a+pi <~
e limy, 00 Yn = B-

that is, the sequence of complex numbers (zy,),>0 converges if and only if

the sequences of real numbers (Re 2, ),>0 and (Im 2, ),>0 are convergent, and
lim z, = lim Rez, +1 lim Jmz,.
n—oo n—oo n—oo

10.2.3 Example.

. n ) 1\" ) n o 1\" .
lim +i(14 — = lim +1ilim (1+—=] =1+eil.
n—oo \n 4+ 1 n n—oon + 1 n—00 n
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10.2.4 MATHEMATICA: Lim[z[n],n->Infinity]
In[1] :=Lim[n/(n+1) ,n->Infinity] = Out[l]=1
In[2] :=Lim[(1+1/n) "n,n->Infinity] = Out[2]=e
In[3]:=Lim[n/(n+1)+I (1+1/n) n,n->Infinity] +> Out[3]=1+ie

Figure 10.8: A bounded convergent sequence.

10.2.5 Definition. A sequence (zy,),>0 is called a bounded sequence
if there exists >0 such that

lzn| <, for any n > 0.

10.2.6 From the relation

< |xn + yn1| < |xn| + |yn|

|Yn|
it follows that the sequence of complex numbers (zy,),>0 is bounded if and

only if the sequences of real numbers (Re 2y, ),>0 and (Jm 2, )p>0 are bounded.

10.2.7 Exercise. Prouve that

a) |z] <1 = lim 2" =0
n—o0
= 1
b) |z| <1 = > =1
n=0
c) 2| <1 —  =l+e+224284

Solution. We have
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lim [z" —0] = lim |[2/" =0
n—o0 n—oo

00 k k41
S 2Z"= lim Y} z" = lim 1712' :—11
— k—o0 p—= k—o0 -z -z
n=0 n=0
1 § =1zt 3.
1—2z -
n=0
|z >1

Figure 10.9: The set of all the points z with |z| < 1.

10.2.8 Definition. We say that the sequence (zy,),>0 tends to infinity
Jim, 2 = o0
if

nh_)rréo |2n| = o0.

10.2.9 If |z| > 1 then lim 2" = co.
n—oo

10.3 Complex functions of a complex variable

10.3.1 Complex function means a function with complex values.

10.3.2 Definition. We say that the function of a real variable
f:(a,b) —R

is differentiable at the point g € (a, b) if there exists and is finite the limit

oy e (@) = f@o)
flwo) = lim == —
called the derivative of the function f at the point xg.
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10.3.3 Derivatives of some real functions of a real variable

‘ Function ‘ Derivative ‘ Domain ‘ Conditions ‘
/' R—R flz)=c¢c f(x)=0 R
ffR—R flz)=2a" f/(x) = na™1 R neN*
f:(0,00) — R flz)=2a~ f(z) = ax® ! (0,00) a€R
f:R* — R flz) = % fl(x) = —% R*
fil0,00) =R f(x) =& fl@)=5~ (0,00)
f:00,00) — R flz)= fl(x)= — 316"_1 (0,00) n € 2N*
f:R—R f(x) = /x fla)=— in_l R* nE2N+1
f:(0,00) — R f(x)=Inzx fl(x) = % (0,00)
fR—R f(z) =a" f'(x)=a"Ina R 0<a#1
fR—R flx)=¢" fl(x)=¢€" R
f:R—R f(z)=sinx f(xz) = cosx R
/' R—R f(z)=cosx f(x)=—sinx R
[R=(5+Zr)=R  f(z) =tanz | f(z) = — R—(5+Zn)
[ R—Zmr—R f(z)=cotx J(x) = —— R—Zm
f:-1,1 —R f(z)=arcsinz | f'(x) = 1;2 (—-1,1)
f:-1,1 —R f(z)=arccosz | f'(x) =— 11%2 (—-1,1)
fR—R f(z)=arctanz f,(x):m% R
/' R—R f(z)=arccotx f’(x):—lﬁrg R
/' R—R f(z)=shx f(x)=chx R
/' R—R f(z)=chz f(x)=shz R

10.3.4 Previous definition can not be directly extended to functions of two variables
f:DCR?> —R

because the relation
. L, Y) — J\To, Yo
Flaoyo) = Tim f(z,y) — f(@o, 90)
(@)= (o)  (2,y) — (z0,Y0)
is meaningless (divison by the vector (z,y)—(zo, yo) is not defined). But, the possi-

bility to divide by a non-null complex number allows us to define the differentiability

of a function of complex variable by following the analogy with the real case.

10.3.5 Definition. Let D C C be an open set.We say that the complex function

f:D—C
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is complez-differentiable (or C-differentiable) at the point zg € D if there
exists and is finite the limit

Flz0) = lim LE) =0

Z—20 zZ— 20

called the derivative of f at z. Instead of f’(zy) we sometimes write %(zo).
10.3.6 Example. The function

f:C—C¢C, flz) =23
is C-differentiable at any point zg € C

3 3
/ — i 2 TR0 2 2y _ 9,2
f(zo)—zhnzlo P —Zhnzlo (2% + 202 + 23) = 32

and f'(z) = 322, that is, we have

(23) =322
1
s

Figure 10.10: The function f(z) = z is not C-differentiable at zy = 1.

10.3.7 The function

f:C—C, flz)=2%
is not C-differentiable at the point zg = 1 because the limit
.o z—1
lim
=1 z—1
does not exist. By choosing the sequence z,, =

nLH with lim, o z, = 1 we get
Zn — 1

n+1

. Zn — 1
lim
n—00 z, — 1

but, by choosing the sequence z, =1+ —L_j also with lim,, o0 2, = 1 we get

=—1.
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10.3.8 Based on the identification of C with R?
C—R*: z+yie (z,9)
we can describe any complex function of a complex variable
f:D—C
by using two real functions of two real variables
[z +yi) = u(z,y) +o(z,y)i

where
u=%Re f: D — R isthe real part of f

v=Jm f: D — R isthe imaginary part of f.

10.3.9 Examples. a) In the case of the function

f:C—¢C, flz)=z2

we have
flx+yl) =z —yi
that is,
uz,y) ==z, o(z,y) = -y
b) In the case of the function

f:C—C, f(z) = 2*

we have
fle+yi) = (z+yi)? = (2% — y°) + 2ayi

and hence
u(w,y) =2* —y*,  o(z,y) = 2wy
10.3.10 In view of the definition, the function

f:D—C,  flz+yi)=u(zy)+ov(y)i
is C-differentiable at zp = zo + yoi if and only if the limit

o 1) = (20)
Z—20 Z— 20

exists and is finite. In order to have
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lim &) = f(=0) — ot i
Z—r 20 Z— 20
it is necessary to have
t) — ti) —
A ) f(ZO):oH—Bi, i 0+ 1)' f(ZO):oH—ﬁi
t—0 t t—0 t1
that is, the relations
t — t —
i &0 + 1, 90) — u(o, o) 4 lim v(zo +1,40) — v(20,%0), _ ot b
t—0 t t—0 t
t) — t) —
lim ’LL(I'Q, Yo + ) ’U,(.%'07 yO) + lim ’l)(l'o, Yo + ) ’U(.%'O, yO)l —a+ ,81
t—0 t1 t—0 t1
equivalent to
ou v v ou
5 L0, %0) = o = a—y(xo,yo), 5y L0 %0) =6 = —8—y($o,yo)-
Particularly, if f is C-derivable at zg=x¢+yoi then

.0 0 .
F'(o + yoi) = 5 (0,30) + 5 (@0, o)

10.3.11 Theorem (Cauchy-Riemann) The function
f:D—C,  f(x+yi)=u(r,y)+v(r,y)i

defined on the open set D C C is C-differentiable at the point
zo=x0+yol € D if and only if the real functions

u:D— R, v:D—R

are R-differentiable at (xo,yo) and the Cauchy-Riemann relations
ou v ou v

5 (0:%0) = 8—y(9€0,y0)7 8—y(9€0,y0) = —5, (%0, %)
are satisfied. If all these conditions are satisfied then
ou Ov
/ N vy .
fH(zo +yol) = B (20, y0) + B (0, yo) 1.
A proof can be found in [?].
10.3.12 Definition. Let D C C be an open set. A function
f:D—C

is called C-differentiable (or holomorphic) if it is C-differentiable at any point of D.
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10.3.13 Exercise. Prove that the function
f:C—C, f(z) =22
is holomorphic and find its derivative f'(z).
Solution. We use the Cauchy-Riemann theorem. We have

flz+yi) =(x+ yi)2 = (ac2 — y2) + 2zyi

and hence
w(e,y) =a® —y?, w(z,y) = 2uy.
The functions u and v are R-differentiable at any point and
ou Ov ou v
— =2r=— — =—2y=—— .
gr DY) =2 =g @), F@y) y=—5_-(x.y)

The derivative of f is
e +yi) = %(:ﬂ,y) + %(ﬂ:,y)i = 2z + 2yi

that is, f'(z) = 2.
10.3.14 Exercise. Prove that the function
f:C—C, flz)=2%
is not C-differentiable.

Solution. We use the Cauchy-Riemann theorem. We have
fle+y) =z —yi
that is,
U(.%',y) =, U(l’,y) =Y.

In this case the Cauchy-Riemann relations are verified at no point because

ou ov

10.3.15 Definition. The function
f:C—C, f(z) =¢"
where
e“ T = % ¥ = e® (cosy +1 siny) = e” cosy +ie” siny

is called the (complex) exponential function.
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10.3.16 MATHEMATICA: Explx+y\, I], N [Exp [x+y\, II]
In[1] :=Exp[x+y I]
In[2] :=ComplexExpand [Exp [x+y I]]
In[3]:=Exp[2+3 I]
In[4]:=N[Exp[2+3 II]
In[5]:=N[Exp[2+3 I],15]

ut[1]—ex+Hiy

t[Z] e* Cos[y]+1i e* Sin[y]

Out[3]=e?+31

t[4]*—7 3151141.04274 i
ut[5]=—7.31511009490110+1.04274365623590 i

11111

10.3.17 The exponential function is a periodic function with the period 27i
ez+27ri — &7

and

#1122 — %1 g?2
for any 21, z9 € C.

10.3.18 Exercise. Prove that the exponential function
f:C—C, f(z)=¢*
is holomorphic and
(e*) = e
Solution. We use the Cauchy-Riemann theorem. From the relation
flx+yi) =e" cosy+ie” siny

we get u(z,y) =e* cosy and v(z,y) = e siny. The real functions v and v are

R-differentiable at any point and

ou . _Ov ou e v
ey = cosy = Swy). Gl =~ siny =~ (a,y).

The derivative of f is

19, 0
J'(2) = fla+yi) = 5= (0,y) + 5 (@.y)i = ¢ cosy +ie” siny = ¢

10.3.19 Exercise. Find the holomorphic function
f:c—=cC
satisfying the conditions
Jm f(z,y) = 2zy +y, f) =1

Solution. By looking for a function f of the form
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[z +yi) = ulz,y) + 22y + y)i

from the Cauchy-Riemann theorem we deduce the relations

ou ou
ax(%y) T+ 1, 3y<x7y) Y

whence u(z,y) = 22 — y? + 2 + ¢, where c is a constant. By imposing the additional
conditions f(i) =1 we get

fla+y) =2y’ +a+1+ ey +y)i= (2 +yi)° + (@ +yi) +1
that is, f(2) = 22 + 2 + 1.

10.3.20 a) If the functions f,g: D — C are holomorphic then

(af £Bg) =af £8d (f9) = fg+fd
for any «, 5 € C. If, in addition, g(z) # 0 for any z € D, then
([)' _f'9—1d
g 9

b) If the functions D Lic % are holomorphic then
d
2 0(f(2)) = 9 (f(2)) ['(2)-

10.3.21 MATHEMATICA DI[f[z],z]
In[1]:=D[a f[z]+b glzl,z] > Out[l]=af'[z]+bg'[]
In[2]:=D[f[z] glz],z] —  Out[2]=f [z] glz]+f[z] g’ [7]
In(3]:=D[f[z]/glz],z] > Out[3]= Zl flz] &' [2]
= |=g

glz]2
In[4]:=D[g[£f[z]],z] [ [2]] f'[2]

10.3.22 Exercise. The complex functions

cos: C — C, cos z = e‘Z+Qeﬂz
sin: C — C, sinz_%
ch:C—C, chz = 4"
sh:C— C, shz — &=e*

are holomorphic and
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(cosz) = —sinz (sinz)’ = cos z
(chz) =shz (shz) =chz.

Hint. Direct computation.

10.3.23 MATHEMATICA D[f[z],z]

In[1]:=D[z"n,z] > Out[l]=nz~!t» In[4]:=D[Explz],z] = Out[4]=e”
In[2] :=D[Cos[z],z] > Out[2]=—Sin[z] In[5]:=D[Sin[z],z] = Out[5]=Cos|z]
In[3]:=D[Cosh[z],z] +> Out[3]=Sinh[z] In[6]:=D[Sinh[z],z] +> Out[6]=Cosh|z]

10.3.24 MATHEMATICA Figura 10.11 s-a obtinut utilizand

In[1] :=Plot[{Exp[x], x, Loglx]}, {x, -3, 3}, PlotStyle -> {Red, Dashed, Thick},
AspectRatio -> Automatic]

Figure 10.11: The natural logarithm In is the inverse of the exponential function e*.

10.3.25 The real exponential function
R — (0,00) : x+—€”
is bijective. Its inverse is the natural logarithm function
(0,00) — R: z+— Inuz.
We have
r=e

for any x € (0,00). In the complex case, we can obtain a rather similar relation

jargz _ eln |z elarg 2 In |z|+i(arg z+2k7)

z=|z|e =e

satisfied for any k € Z.
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yarg z

Figure 10.12: The principal branch log z=In|z|+iarg z.

10.3.26 Definition. Let us consider the set
Co=C—{z]| Tmz=0, Re 2<0 }

obtained by removing from C the “cut” { z | Jm 2=0, Re 2<0} connecting 0 with

00. The continuous functions
log;, : Co — C, log,z = In |z| +i(arg z + 2km)

depending on the parameter k € Z are called the branches of the complex logarithmic
function. The principal branch log is usually denoted by log, that is,

log : Cy — C, logz =In|z| +iargz.

10.3.27 MATHEMATICA ComplexExpand[Log[x+I yI]

In[1] :=ComplexExpand[Log[x+I y]] > Out[1]=i Arg[x-+iy]+2 Log[x2+y?]
In[2] :=ComplexExpand [Log [1+1]] > Out[2)=17 4 Logl2l
In[3]:=N[ComplexExpand[Log[1+I]]] = Out[3]=0 6574+0 785398 1

In[4] : =N[ComplexExpand [Log[1+I]],10] + Out[4]=0.3465735903+0.7853981634 i

10.3.28 At the level of the cut { z | Im 2=0, Re 2<0} we have

%% log(—2+t) =In2 —ir and 2%1\1}(1) log(—2 +ti) = In2 + ir.

Therefore, log can not be extended by continuity at the points of the cut.

10.3.29 MATHEMATICA Limit[Log[-2 + t I], t -> 0, Direction -> 1]

In[1]:=Limit[Log[-2 + t I], t -> 0, Direction -> 1]  — Out[l]=—in+Log2]
In[2] :=Limit[Log[-2 + t I], t -> 0, Direction -> -1] + Out[2]=in+Log[2]

Exercise. Prove that
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IS

(logyz) =

Solution. By denoting f(z)=log,z=u(x,y)+iv(x,y) we get the relations

%(xay) = ZQL_HJQ = g_;j(x?y)’ g_Z(xay) = x2_@{_y2 = —%(ﬂj,y)

whence

fl(@+yi) = G2z, y) +1 582, y) = 572 = w

10.3.30 The branches of the power function z* with complex exponent « are
Co — C: 25 2% = e¥logr?,

In the case a:% with n € N* there exist only n distinct branches

Llog, 2 n arg z+2km)

Co—3C: 25 zn =en = \z[e%(
for example, those corresponding to k€{0,1,...,n—1}.
10.3.31 MATHEMATICA ComplexExpand[Sqrt[x+I yl]

In[1] :=ComplexExpand[Sqrt [x+I y]]
— Out[1]=(x? +y2)1/4Cos[%Arg[x+liy]]+li(x2+y2)1/4Sin[%Arg[x+liy]]

In[2] :=ComplexExpand[Sqrt [1+I]] — Out[Q]:Ql/QCos[%]-ﬁi 21/28in[%]

In[3] :=N[ComplexExpand[Sqrt[1+I]1],10] — Out[3]=1.098684113+0.4550898606 i
In[4] :=Limit[Sqrt[-1 + I x], x -> 0, Direction -> 1] — Out[4]=—1
In[5]:=Limit[Sqrt[-1 + I x], x -> 0, Direction -> -1] — Out[5]=i

10.3.32 MATHEMATICA ComplexExpand[(x + I y)~(1/n)]
In[1] :=ComplexExpand[(x + I y)~(1/3)]
— Out[l}:(x2+y2)%(}os[Arg[);-Hiy]}+1‘1(X2+y2)%5in[w]

10.3.33 Exercise. Describe the branch of the function
_ 3/~ : _ 1 i3z
= th 1) = 12,
6= {2 it ()= gse

z

Solution. We have

€ Cy

i—z
if and only if 2z belongs to the domain

D=C—-[0,ij=C—{z] Rez=0, 0<Imz<1}
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Figure 10.13: The relation z=r; elf1 =ity eif2,

obtained by removing from C the “cut” [0,i]. By denoting

z=r1 e =ity e

we get i—z=—r9 elf2 = 79 el(@2+7m) and

7"1 i91792;‘"«#21@#

fl2) = e

[
From 1=¢0=i4++/2¢7'7 it follows k = 1 and hence

I8 191—§2+W

f(Z):?’Ee

10.4 Complex line integral

10.4.1 Proposition. Let D C C. The complex mapping
v:la, b — D, (1) = o(t) +9(b)i
s continuous if and only if the real mappings
©=Rev:[a,b] — R, Y =TJm~:[a,b] — R

are continuous.

Proof. The statement follows from the relation
|0 (t) = @ (to)]

}Sh®—7%ﬂéww—¢%ﬂ+ww—w%ﬂ
[ih(t) — b(to)]



22 Version 18 Apr 2020 (for updates see https://unibuc.ro/user/nicolae.cotfas/

at b \\\

Figure 10.14: Path of class C! in D.

10.4.2 Definition. A mapping
v:(a,b) — D

is differentiable at the point ty € (a, b) if there exists and is finite the limit
() = (to)

t—to  t—ty
The mapping -y is called differentiable if it is differentiable at any point.

10.4.3 In the case of a mapping
v :la,b] — D
the derivateives 7/(a) and +/(b) are defined as
V() —(a) +/(b) = lim () —2(0)

/ BT
v(a) = lim —=—"=, i t—b

10.4.4 Proposition. The mapping
v:la, 0] — D, A(t) = @(t) +(t)i
s diferrentiable if and only if the real mappings
@ =NRev:[a,b — R, Y =Tm~y:[a,b] — R
are differentiable, and
7 () =¢'(t) + ¢ (1)1
Proof. We have
() — (ko) o(t) — p(to)

t) —(t
t=to ¢t —1p t—to t—to i—to t—to
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10.4.5 Definition. Let D C C. A path of class C' in D is a differentiable mapping
v :la,b] — D
with continuous derivative 4/ : [a,b] — C.
10.4.6 Examples.
a) For any z € C, theconstant mapping
v:[0,1] —C, A(t)==
is a path of class C! in C (called a constant path).
b) For any complex numbers z; and z; the mapping
~v:0,1] — C, Yt) =1 —t)z + 1tz
is a path of class C! in C (called the linear path connecting z; with zp).
c¢) For any zp = z¢ + yoi € C and r > 0 teh mapping
v :[0,27] — C, y(t) = 2 + el = 29+ rcost + (yo + rsint)i

is a path of class C! in C (called the circular path of radius  and center z).

at b \\\

Figure 10.15: Complex line integral.

10.4.7 Definition. Let f: D — C be a continuous function and ~:[a,b] — D a path
of class C' in D. The complex line integral of the function f along

the path 7 (see Figure 10.16) is the number

/f dz—/f
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Figure 10.16: The path (¢) = €' = cost + i sint.

10.4.8 Exercise. Consider the function
fiot—e fle) =
where C* = C—{0} and the path of class C*
v :[0,27] — C*, v(t) = e = cost +1 sint.

Compute

Lf(z)dz

Solution. Since f(v(t)) = ﬁ =e i and 7/(t) = ie" we get

2m 2 . .
/ f(z)dz = Fy@) ' () dt = / e tieldt = 2ri.
0 0 0

—~

t)=2z we have +/(t)=0 and hence
f(z)dz=0

10.4.9 In the case of a constant path

—

for any function f.
10.4.10 If f(x +yi) = u(z,y) + v(z,y)i and ~(t) = ¢(t) + 1(¢)i then
Iy 1@z = [3lule(t), 9(8) @/ (£) = v(e(t), () ' (D) dt
H [ (o (t), (8) ¥ (8) + (), (1) ' (1)) dt.

/Zdz
v

where v is the linear path connecting z; = 1 with 2o =1i.

10.4.11 Exercise. Compute
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Figure 10.17: The linear path connecting 1 with i.

Solution. Since
v :0,1] — C, v(t)=(1—-t)1+t

we get the relations f(v(t)) =~(t) =1—t —ti and 7/(t) = —1 + i whence
1 1 1

/zdz:/ (1—t—ti)(—1+i)dt:/ (—1+2t)dt+i/ dt = i.
v 0 0 0

10.4.12 MATHEMATICA: Integral along a closed polygonal path

In[1] :=Integrate[Conjugate[z], {z, 1, I}] = Out[l]=i
In[2] :=Integrate(1/z, {z, 1, I, -1, -I, 1}] + Out[2]=2inx

Figure 10.18: Equivalent paths.

10.4.13 Definition. Let D C C be a subset. Two paths of class C!
v :|a,b] — D and v :a1,b;] — D

are equivalent if there exists a bijective, differentiable and increasing mapping
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X : a1, b1] — [a, b]
such that

7(s) =7(x(s)),  forany s€las,bi].

10.4.14 The defined relation is an equivalence relation wich allows to divide the set
of all the paths into equivalence classes. Each equivalence class represents a curve.
The elements of the class are all the possible parametrizations of the considered

curve.

10.4.15 Proposition. If
f:D—C
is a continuous function and if the paths of class C*
v :la,b] — D, v : a1, b1] — D
are equivalent then

A f(z)dz = / () d

that is, the value of the integral depends on the curve, but not on the

particular parametrization we choose.

Demonstratie. By using a change of variable we get
J T dz = [ F ()71 (s) ds
= Jal TN Y (X)X () ds = [ F(r(8) o/ (@)t = [, [(2) d
10.4.16 Any path
v :la,b] — D
is equivalent to a path defined on [0, 1], namely,

Y :[0,1] — D, Yo(t) = v((1 — t)a + tb).

10.4.17 Definition. Let 7 : [a,b] — D be a path of class C'. The path
Yila,b) — D, () =~y(a+b-1)

is the inverse paths corresponding to ~.
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10.4.18 Proposition. If
f:D—C
s a continuous function and
v :[a,b] — D
a path of class C in D then

/ﬁf(z)dz:—/yf(z)dz.

Proof. By using the change of variable s = a + b —t we get
Js F(z)dz = [ FAW)Y () dt = = [} f(v(a+b—1)y (a+b—t)dt
= Jy F(v(s)) 7' (s)ds = — [, f(2) dz.
10.4.19 Definition. Let D C C. A path piecewise of class C' in D is a continuous
mapping
v :[a,b] — D
such that there exists a subdivision a =ty < t; < ... < t, = b with:
1) the restrictions 7|, _, 4,) are differentiable and with continuous derivative
2) there exist and are finite the limits
lim ~/(¢), lim +/(¢), lim ~/(¢), lim~/(t)

tN\a NGt t it \Gb
for any j € {1,2,...,n—1}.

10.4.20 The considered path is composed by the paths of class C*
M : [to, t1] — D, Y1 = Yto,t1]

Yo i [t1,t2] — D, 72 = 7|[t1,t2}

In t [tn—htn] — D7 Tn = ’Y’[tn_l,tn}
and for any continuous function

f:D—C

we define the complex line integral of the function f along the path v as

[sei=3 [ s@a=3 [" reur@a.
v o1/t

j=177
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Figure 10.19: Path piecewise of class C1.
We consider only paths piecewise of class C', and call them simply paths.

10.4.21 Example. The mapping (Figure 10.19)

emit daca t€[0,1]
(t) = }
2t —3 daca te(1,2]

is a path in C, and for any continuous function
f:Cc—cC

we have

1 2
_ it i it . )
Lf(z)dz—/o F(e™) e dt+/1 F(2t — 3) 2dt

10.4.22 Antiderivatives of some real functions of a real variable f: I - R

(I is an interval contained in the domain of derivability of the antiderivatives)
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‘ Function ‘ Set of all the antiderivatives ‘ Interval ‘ Conditions ‘
flx)=1 fd:v:aH—C ICR
f(z)=a" Ja"dx = +1 z"H4C ICR neN
f(z) =2~ Jxdx = a}H 2ot 4C IC(0,00) aceR—{-1}
fl@)=1 [1de=Inlz[+C ICrR—{0}
f(z)=¢e" fexdac—e +C ICR
f(z) =a" [a®dx = = a"+C ICR 0<a#1
f(x)=sinz fsm:vd:v——cos:v—kc ICR
f(z)=cosz Jcoszdr =sinz+C ICR
fl@) =2 | [ == do =tana+C ICRA% +Zn)
f(x):qileT qileT dr = —cotz+C ICR—Zr
f(z)= \/a21—x2 7= dv = arcsin ¢ +C IC(—a,a) a##0
f(x)= \/x21—a2 /= 21 dr=In|z+Va?—a?|+C | ICR—[-a,d] a>0
f(x)= \/x21+a2 f\/ T dm—ln(x+\/m2+a2) +C ICR a#0
f(z)= ag}rmg J a2+mg dr = = arctan °+C ICR a#0
flx)= xziag J xz_ag dz = 2 In i—;g +C ICR—{+£a} a#0
f(z)=shzx Jshazdr =cha+C ICR
f(z)=chz Jchxdr =shx+C ICR

10.4.23 Definition. We say that the function defined on an open set D

f:D—C

admits antiderivatives in D if there exists a holomorphic function

g:D—C

such that

10.4.24 Examples.

a) If ke{0,1,

f:C—C,

admits in C the antiderivative

g:C—C,

for any z € D.

2,...} then the function

f(2)

k

=2"=z- -z -z
—
k ori
k41
z
9(z) =



30  Version 18 Apr 2020 (for updates see https://unibuc.ro/user/nicolae.cotfas/

because

k+1
b) If k€{2,3,4,...} then the function

SR\
=2 for any 2ze€C.

% _ 1
f:C"—C, f(z):zkzz—k
admits in C* = C—{0} the antiderivative

21—k 1
:C* —C, = = _
g IG) =T = TG
because
e AN
e 2k for any ze€C”.

¢) The exponential function
f:C—C, f(z)=¢*
admits in C the antiderivative
g:C—C, g(z) =e
because
(e*) = &7, for any zeC.
d) The function

cos: C — C, f(z) =cosz

admits in C the antiderivative
g:C—C, g(z) =sinz
because
(sin z)" = cos z, for any ze€C.
e) The function
sin: C — C, f(z) =sinz
admits in C the antiderivative

g:C—C, g(z) = —cosz

because

(—cos z)' = sin z, for any ze€C.
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10.4.25 Proposition. If the continuous function

f:D—C
admits in D the antiderivative
g:D—C
and if
v :[a,b] — D

is a path contained in D then
[ 1)z = g0 = 900) - gr(@):
.

Proof. By using the change of variable formula we get

L F(2)dz = [2 F(y(0) 7 (t) dt = [2 g'(v(t)) ¥/ (t) dt

= [2 Lg(y(t)) dt = g(v() =) = 9(2) 22210,
10.4.26 If a continuous function
f:D—C
admits an antiderivative in D, then the integral along a path
v :la,b] — D
contained in D depends only on the endpoints v(a) and (b) of the path. If
v :la,b] — D and 7 :la,b] — D
are two paths in D such that v(a) = v1(a) and ~y(b) = ~1(b) then

Lf(z)dz = /«/1 f(z)dz.

10.4.27 Exercise. Compute the integrals

1
/zgdz, /—de, /ezdz, /(2234—32 —e*)dz
¥ vz ¥ ¥ z

where 7 is a path in C* with the starting point 1 and end point i (Figure 10.20).

Solution. Let v : [a,b] — C* be a path with the starting point z; = 1 and end

point zo = i, that is, such that v(a) = 1 and (b) = i. We have
4 17=7(b) 4 |7=1 4

1

/ I — z -

8 1 1

4

it 0
4 - bl

z=v(a) z=1
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V
N

Figure 10.20: A paths v with the starting point 1 and end point i.

1 17=®) 17 1
/—dz:—— ) I
Y 22 z z=v(a) Zlz=1 1
/ezdz = eﬂiil% = ¢*|’Z =l —e=cos1+isinl —e,
.

f,y(2z3+z%—ez)dz:2fwz3dz+5fvz%dz—f,yezdz
=5+4+e—cosl+ (5 —sinl)i

10.4.28 Definition. A path ~:[a,b] — D is called a closed path if

Y(a) = ~(b)
that is, if the starting point v(a) and the end point () coincide.

10.4.29 Proposition. If the continuous function

f:D—C
admits in D an antiderivative
g:D—C
and if
v :[a,b] — D

is a closed path contained in D then
/ f(z)dz = 0.
.

Proof. Since ~y(a) = v(b) we have
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10.4.30 Exercise. Consider the circular path
v : [0, 27] — C, v(t) = e = cost +isint.

/zkdz:O
.

forany ke z — {-1} ={...,-3,-2,0,1,2,3,...}, but

1
/zildz :/—dz = 27i.
0 v 2
b) Prove that
a—o

/<_+u+a0+a1z+a2z2>dz:27ria1
~ z

a) Prove that we have

22

for any a_s, a_1, ag, a1, as € C.
Solution. a) The path v is contained in the open set C* = C—{0} and the function
f:Cc"—C, fz)=2"

admits in C* the antiderivative

Zk+1

E+1

g:C"—C, g(z) =
for any k € Z—{—1}.

b) By using the definition of the complex line integral we get
2m

1 21 ZLE R
/—dz:/ —7'(t)dt:/ —ieldt =i dt = 2i.
v 2 o () o e 0
10.4.31 From the previous exercice it follows that the holomorphic function
f:C"—C, flz)=-
does not admit any antiderivative in C*.
10.4.32 Exercise. Consider the circular path
v :10,27] — C, v(t) = 2o + rett
a) Prove that
/(z—zo)kdz:O for any kez—{-1}
gl

but

1
/(z —2) ldz :/ dz = 2mi.
gl Y& T A0
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b) Prove that

[y <(z Ci_jo)? + Za__io +ao+ a1 (z—20) +az(z— zO)Q) dz = 2mia_q

for any a_s, a_1, ag, a1, as € C.

Solution. a) The path v is contained in the open set C — {2y} and the function
f:C—{z} —C, f(z) = (z = 2)"
admits in C* the antiderivative
(Z _ ZO)kJrl
:C—{z} —C, =22
9 {20} 9(2) k1
for any k € Z—{—-1}.

b) By using the definition of the complex line integral we get
2

1 2T 1 , 2T 1 . i ) )
/ dz:/ 77(t)dt:/ —ire’dt =1 dt = 2mi.
N Z— 2 o ()= 20 o rel 0
10.4.33 From the previous exercice it follows that the holomorphic function

fic—fa} =€ f@)=(-a) =

does not admit any antiderivative in C — {z}.

10.4.34 Definition. A connected set is a set which cannot be partitioned into two
nonempty subsets such that each subset has no points in common
with the set closure of the other.

A set D is called a path-connected set if for any two points 21, 29

from D there exists a path contained in D connecting z; and zs.

10.4.35 Any path-connected set is a connected set.

An open connected set is called a domain.

B(2+1)

-
NPT

Figure 10.21: The disks B;(0), B1(2 +i) and By(—1 +iv2).
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10.4.36 Example. The set B;(0)UB;(—1+iy/2) is a domain, but By (0)U By (2+1)
is not a doain ( Figure 10.21).

10.4.37 We know that any path ~ : [a,b] — D is equivalent with a path

[0,1] — D : t = v((1 — t)a + tb).

Without loss of generality, we can use only paths defined on the interval [0, 1].

Figure 10.22: Paths homotopic in the domain D.

10.4.38 Definition. We say that the paths vy and v, from D having the same end
points are homotopic in D if one can be continuously deformed into the other

inside D, that is, if there exists a continuous mapping
h:[0,1] x [0,1] — D : (s,t) — h(s,t)
satisfying the following conditions

a) h(0,t) =o(t), for any oricare ar fi ¢t € [0, 1],

=

(
) h(1,t) =~(t), forany te€]0,1],
) h(S,O) = ’YO(O) = ’Yl(o)? for any s € [07 1]7
d)  h(s,1) =99(1) =~1(1), forany s € [0,1].

o

10.4.39 Example. The paths 79, 71 : [0,1] — C,
. 1 1.,
’VO(t) — 627r1t’ o (t) = -4 _e27r1t
2 2
are homotopic in D = C—B1 (1). In this case we can choose (Figure 10.23)
4

h(s,t) = (1 = s)y0(t) + s71(t)-

Generally, we shall ‘decide’ whether two paths are homotopic directly
by using the corresponding figure.



36  Version 18 Apr 2020 (for updates see https://unibuc.ro/user/nicolae.cotfas/

Figure 10.23: Homotopic paths.

10.4.40 Example. The circular path
Y : [0,1] — C, Yo(t) = 3e*™ = 3 cos 27t + 3isin 2t
is homotopic in C* with the elliptic path
7 :[0,1] — C, 7 (t) = 3cos 2t + isin 27t
but the two paths are not homotopic in D = C—{2i} (Figure 10.24).

3i

Figure 10.24: Circular path homotopic to an ellyptic one.

10.4.41 Example. The paths vy, 71 :[0,1] — C,
Wt =1-2t,  m(t)=e™
are homotopic in C, but they are not homotopic in (C—{%i} (Figure 10.25).
10.4.42 Definition. We say that the closed path
v :la,b] — C

is homotopic to zero in D if it is homotopic in D with a constant path
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Figure 10.25: The paths yo(t) = 1 — 2t and 71 (¢) = ™.

[a,b] — D : t +— 7(a).

Figure 10.26: Path homotopic to zero in D.

10.4.43 Example. The circular path
V01— ) =

is homotopic to zero in D =C — {2i}, but it is not homotopic to zero in
C*.

2i
i

I
L

Figure 10.27: The path 7 : [0,1] — C, ~(t) = &>,

10.4.44 Theorem (Cauchy) If D C C is an open set,
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f:D—C
s a holomorphic function and
v :[a,b] — D
1s a closed path homotopic to zero in D then

Lf(z)dz = 0.

A proof can be found in [?].

10.4.45 Proposition. If D C C is an open set,
f:D—C
s a holomorphic function and

70:[aab]—>Da 71:[a7b]—>D

are two paths homotopic in D then

/v0 f(z)dz :/ f(2)dz. (10.1)

gat

Figure 10.28: The paths v9 and 4; form a closed path.

Proof. The path obtained by composing o with the inverse 4; of  is a closed path

homotopic to zero in D. By using Cauchy’ theorem we get the relation
/ f()dz+ [ f(z)dz=0.
70 ot
echivalenta cu (10.1).
10.4.46 Let k be a positive integer. The path
100 € ) =z + 2

winds k£ times around zp in the direct sense (counterclockwise) and
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1 1
2T Jy z — 20

v:[0,1] —C, Y(t) =20+ e

The path
—2kmit

winds k times around zp in the inverse sense (clockwise) and

1 1
—/ dz = —k.
2mi Jy 2 — 20

The path ~ from Figure 10.29 is homotopic in C—{zp} to the path

0 7(0)

Figure 10.29: Drumul v are indexul 2 fata de z.

7 :[0,1] — C, Y1 (t) = 2o +re’™

1 1 1 1
/ dz:_./ dz = 2.
21 Jy 2z — 20 21l Jy 2 — 20

Generally, if v is a closed path not passing through zy the number

1 1
=_— d
nom) = 5 [ s e

and hence

called the indexr of zy with respect to v, shows how many counterclockwise turns

around zp the path 7 makes. A proof can be found in [?].

10.4.47 A closed path = determines a partition of the set of all the points not lying
on 7 into connected sets. All the points belonging to the same component of the

partition have the same index with respect to v (Figure 10.30).

10.4.48 Theorem (Cauchy’s formula). Any holomorphic function
f:D—C

defined on an open set D is indefinitely differentiable, and for any path
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Janh
Eo/lé

Figure 10.30: The index with respect to « of the points not lying on ~.

v:[0,1] — D
homotopic to zero in D we have
k! f(©)
R ()= — [ L) 4
for any k € N and any z € D—{ ~(t) | t€]0,1] }.
A proof can be found in [?].
D

C

Figure 10.31: f*)(2) satisfies Cauchy’s formula.

10.5 Laurent series

10.5.1 Definition. Let D C C be a subset and
fn: D —C, n €N

be functions defined on D. The series of complex functions

>
n=0
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is said to be convergent (respectively, uniformly convergent) if the sequence

of partial sums (sg)g>0, where
k
Sk = Z In
n=0
is convergent (respectively, uniformly convergent). The limit of this sequence
0 k
= lim s; = lim = lim

is the series sum. The considered series is said to be absolutely convergent

if the series of real functions
o
> 1l
n=0
is convergent.
10.5.2 Proposition. If |z| < 1 then the geometric series
o
> "
n=0

is convergent and its sum is lef that 1is,

> 1
|z] <1 = nz::Oznzl_Z.
Proof. 1f |z| < 1 then
lim iz": lim (1424224 +2F) = lim Lot -
k—ro0 = k—o0 k—oo 1—2 1-=2

10.5.3 Theorem (Weierstrass). Let D C C be a subset and
fn:D—C, n €N
be functions defined on D. If there exists a convergent series of real numbers
o
D> an
n=0
such that

[fa(2)| < om,  forany z€D, nEN

then the series of complex functions
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o
> f
n=0

is absolutely and uniformly convergent.

10.5.4 Definition. A power series about zy (or centered at zp) is a series of the form

oo
Z an, (Z - ZO)n
n=0

where the coefficients ag, a1, as ,...are complex numbers.

It can also be written in the form

ap+ay (z — 20) +ag (z — 29)% +--- .

10.5.5 Any power series is a series of functions
[e.e]
> Jn
n=0
with the functions f, having the particular form

Jn: D —C, fn(2) = an (2 — 20)"™.

10.5.6 Definition. Let D C C be an open set and
f:D—C, fn:D—C, neN

be functions defined on D. We say that the sequence of functions (fy,)n>0
converges uniformly on compact sets to f if the sequence of the restrictions

fn|k converges uniformly to f|g, for any compact subset K C D.

10.5.7 Theorem (Weierstrass). Let D C C be an open set and
f:D—C, fn:D—C, n €N

be functions defined on D. If the functions f,, are holomorphic and (fn)n>0

converges uniformly on compact sets to f then f is a holomorphic function and

lim f(k) = f(k)7 forany kéeN.

n—o0 n

A proof can be found in [?].
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10.5.8 Theorem (Weierstrass). If D is an open set and the series
oo
> fa
n=0
of holomorphic functions converges uniformly on compact sets in D

then its sum
S:D —C, S(z) = Z fn(2)
n=0

is a holomorphic function and
Sk — Z f,(f“‘)7 forany kéeN.
n=0

Proof. The statement follows from the previous theorem.

Figure 10.32: The disk of center zp and radius |z; — zg].

10.5.9 Theorem (Abel). If the power series

o
Z an (2 — zo)"
n=0

is convergent for z = z1 # zg then it is convergent in the disk
{z|]z=20| <[z1 — 20| }
of center zy and radius |z1 — zo].
Proof. The series Y o2 an(21 — 20)" being convergent, we have
. Y
Jim an(z1 — 20)" =0
and therefore there exists ng € N such that

lan (21 — 20)"| < 1, for any n > ng
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that is,
1

< -
|ay,| P

for any n > nyg.
From the relation
an 2 = 20)"] < (

and from the convergence of the geometric series
o n
Z ( |z — 2o )
n=0 ’Zl o Zo‘

for |z — 2| < |21 — 20| it follows the convergence of the seris Y o> |an (2 — 20)"|. The

n
%) , for any n > ng

normed space (C, | |) being complete, any absolutely convergent series is convergent.

10.5.10 Consider the power series

o
Z an (z — 2z0)".
n=0

If 2z is such that there exists
. " Y
Jim lan(z — 20)"| < 1
that is, such that
2 = 20] < ——
2= < T———7—
limy, 00 vV ‘an‘

then, in view of the root test, the considered series is convergent.

10.5.11 Theorem (Cauchy-Hadamard). In the case of a power series

oo
Z an (z — zo)"
n=0

there exists

R=3 st ¥ B Vlanl # {000}
o0 if mn—)oo V ‘an‘ =0

(called the radius of convergence) such that:
a) In the disk (called the convergence disk)
Br(z0) ={z| |z — 2| <R}

the series converges absolutely and uniformly on compact sets.
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b) In C—Bgr(20) ={ z | |2 — 20| > R} the series is divergent.
¢) The sum series
oo
S Br(z) — C, S(z) =) an(z—20)"
n=0
is a holomorphic function.

d) The derivative series is a power series with the same radius

of convergence and
oo
S'(z) = Z nan(z — 2)" 1, for any k € Bgr(2o).
n=1
A proof can be found in [?].
10.5.12 If there exists the limit

hm |an+1 |
n—00 |an|

then

ap| = lim [0 1]

{1
n—00 ’an‘

limy, 00

10.5.13 Examples.

a) The radius of convergence of the geometric series
oo
> "
n=0
is R = 1 because in this case a, = 1, for any n € N.

b) The radius of convergence of the series

> 2
= n!
is R =lim,_ o % = lim,, y00(n + 1) = 0.

10.5.14 By assuming that f is the sum of a power series centered at zg
o0
F(z) =2 an(z—2)"
n=0

with a non-null radius of convergence, from Cauchy-Hadamard theorem we get
o0

FB(z) = Z[an (z — 20)"]®), for any k€ N.
n=0
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This relation leads to

F®) (z)
K

ap =

10.5.15 Theorem (Taylor series expansion). If the function
f : BT(ZO) — C

s holomorphic and R is the radius of convergence of the associated Taylor series

o f(n)(,
Zif (0)(2—%)"

|
o n:

then R > r and
o f(z
Flz) = 252 £o020) (2 — o)
:f(zo)+%(z—z0)+%(z—zo)2+---

for any z € By(z).
A proof can be found in [?].

10.5.16 Examples. By using the previous theorem we get

1 oo
1_Z:nzzoznzl+z+22—|—--- for |z| <1
0 P 2
p— -
e—zn! 1—1—1'—1—2'—1— for any ze€C
n=0
) o0 Z2n+1 23 25
szzzo(_l)"m:z—a%—g%---- for any 2z € C.
n—=
By differentiation or an adequate substitution we get other Taylor series expansions
Z =1—z422—... for |z| <1
1+z oy
(ISP an V14224324 for |z] <1
—2)?
1 oo
—_— = n(—=D)" =1 -9224322—... for |z| <1
o= LD g
o z2n 2’2 24
f— — n f— —_—— —_— .
cos z = Z( 1) o) 1 o1 + 1 + for any z € C.
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10.5.17 MATHEMATICA: Series[f[z], {z, zo, n}]

In[1]:=Series[1/(1—z), {z, 0, 5}] +> Out[l]=1+2+22+23+24+25+0][z]¢

: 22 25 2t 25 20 7
In[2]:=Series[Exp|z], {z, 0, 6}] = Out2]=142+ 5+ + 55+ 155 T 755 TO[2]
In[3]:=Series[Exp|z], {z, 1, 3}] — Out[3}:e+e(z71)+%e(zf1)2+%e(z71)3+0[z71}4
In[4]:=Series[Exp[z], {z, I, 3}] — Out[4}:e’i+e"‘(z—]i)—l—%e"‘(z—]i)2+%e’i(z—1i)3+0[z—1i}4
In[5):=Series[Cos[z], {z, 0, 6}]  +> Out[5]=1— 5+ 25— 2= +0[2]7

10.5.18 Definition. A Laurent series centered at zp is a series of the form

o0

Z an (z — 2z0)"

n=—oo
where a,, are complex numbers. It can also be written in the form

a_9 a_q

R +ag+ar(z—20)+ag(z—2)2+--- .

(z—20)*  z—2

10.5.19 Theorem (Annulus of convergence). Consider a Laurent series

[e o]

Z an, (Z_ZO)n
n=-—o00
and define
r= mn%oo Vv |a7n|
0 if limy, 00 ¥/]an] = oo

R = m if Timy, o0 /]an] € {0, 00}
0 if limy o0 V/]an] = 0.
If r < R then:
a) In the circular annulus (called the annulus of convergence)
D={z| r<lz—z| <R}
Laurent series converges absolutely and uniformly on compact sets.
b) Laurent series diverges in{ z | |z—zo| <r }U{ 2| |z—20| > R }.

¢) The sum of the Laurent series S : D — C,

(e}

S)= Y an(z—20)"=Y_ an(z—20)""+ > an(z — 2)"
n=1 n=0

n=—oo
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z

(9

Figure 10.33: The circular annulus { z | r<|z—z)|<R }.

is a holomorphic function.
A proof can be found in [?].

10.5.20 Theorem (Laurent series expansion). If the function defined on the annulus
f:D={z]| r<|z—z|<R}—C

is holomorphic then there exists a unique Laurent series

oo
Z an (z — zo)"
n=—00
with the annulus of convergence including D and such that
o
f(z) = Z an (2 = 29)" forany z€D.
n=—00

10.5.21 Examples.

a) The holomorphic function

1
D = 0 1} —cC .
fiD={z] 0<H<1}—C ()= gr—
admits in the annulus D the Laurent series expansion centered at 0
1 1 1 9 1 1 9
b) The holomorphic function
eZ

f:D={z]| 0<|z—i| <0} —C, f(Z):W

admits in the annulus D the Laurent series expansion centered at i
z i (Z—i)2

1) = = = (L S )

i

=ttty e+

(10.3)
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¢) The holomorphic function
1

z

f:D={z]| 0<|z] <0} —C, f(z) =2%e
admits in the annulus D the Laurent series expansion centered at 0

f)=2et =2 (1411p2 1o
( 1! 2 2! 22 ) (104)
g m gttt F 028402 4
10.5.22 Definition. Let f: D —C be a holomorphic function defined on an open
set D. We say that the point zg € C — D is an isolated singular point of the
function f if there exists r > 0 such that the annulus { z | 0 < |z — 29| <7}

is included into D. The coefficient a_1 from the Laurent expansion

a_ a_—
f(z):---—i—(z_ZQO)Q—i—z_iO—i—ao+a1(z—zo)+a2(z—zo)2+---

of f in this annulus is called the residue of f at the isolated singular point

2o and is denoted by Rez,, f, that is,
Rez,,f =a_;.

10.5.23 Examples.

a) The only isolated singular point of the function
. D = 0 1} —cC =
FiD={z] 0<Fl<1}—C  f()=gr—

is z = 0 and from (10.2) we get Rezg = 1.

b) The only isolated singular point of the function

f:D={z]| 0<|z—i|< o0} —C, f(2)

is z =i and from (10.3) we get Rez;f = el.
¢) The only isolated singular point of the function

f:D={z]| 0<|z] <0} —C, f(z) = z"ez

o=

is z =0 and from (10.4) we get Rezof = % =

10.5.24 MATHEMATICA: Series[f[z], {z, a, n}] , Residuelf[z], {z, a}]
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In[1] :=Series[1/(z"2(1-2)), {z, 0, 4}] — Out[l}:z%+%+1+z+z2+23+z4+0[z}5
In[2] :=Residue[1/(z"2(1-2)), {z, 0}] = Out[2]=1

In[3]:=Series[1/(z"2(1-2)), {z, 1, 2}] = Out[3]=— 15 +2-3(z—1)+4(z—1)240[2]?
In[4] :=Residue[1/(z"2(1-2)), {z, 1}] = Out[4]=-1

In[5] :=Series[Exp[z]/(z-1)"2, {z, I, 1} > Out[5}=(zif;)2+Z‘ii]i+e2—]i+%e‘i(zfli)+0[zfﬁ]2
In[6] :=Residue[Exp[z]/(z-I)"2, {z, I}] > Out[6]=e'.

10.5.25 Definition. Let D be an open set and
f:D—C

a holomorphic function. A zero of multiplicity n of f is a point

zo € D satisfying the following conditions

flz0) = fl(20)=...= f("_l)(zo) =0 and f(")(zo) # 0.

An isolated singular point zg of f is called a pole of order n if it is
a zero of multiplicity n for the function %

A pole of order 1 is called a simple pole.

10.5.26 Theorem. If the isolated singular point zo of the holomorphic function
f D — Cis a pole of order n then there is v > 0 such that the annulus

{z|0<]|z—2| <71}
is contained in D and f admits in this annulus o Laurent expansion of the form

f(z):(Zci;zno)n+---+ﬁ+ao+a1(z—z0)+a2(z—z0)2+---

10.5.27 a) A function f with a first order pole zp admits around zy the expansion

f2) = =t agtar(z — 20) +az (2 — )2 + -
(z = 20)
By multiplying with (z — z) we get the relation
(z = 20) f(2) = a1+ ao (2 — 20) + a1 (2 — 20)* + az (z — 20)° + - --

leading to
Rez,,f=a_1 = Zli_)nzlo(z —29) f(2).

b) A function f with a second order pole 2y admits locally around zy the expansion

fz) = (2 6172270)2 * (z(tlzo) +ao+a1(z—2) +az(z - 30)2 +oe
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By multiplying with (z—2)? and then differentiating the obtained relation we get

[(z — 20)2 f(2)] = a_1 + 2a0 (z — 20) + 3a1 (z — 20)* + - --

whence
: 2
Rez,,f=a_1 = zlgngo[(z —20)° f(2)].
¢) A function f with a third order pole zy admits locally around zy the expansion
a—_3 a_9 a—q

2) = - -
/() (z—20)3  (2—20)?% (2—20)
By multiplying with (z—z0)? and then differentiating twice we get the relation

+ao+a1(z—zo)+---

[(z — 20) f(2)]" = 2la_y + 6ag (z — 20) + 12a; (z — z9)? + - - -
leading to
Rez, f=a_1 = L i [(z — 20)% £(2)]".

2! 2—z0
d) If zp is a pole of order n then

feml = ﬁ Jim [z = z0)" F)] "7,

10.5.28 Example. The function

1
:C—{0,1} —C .
has two isolated singular points 0 and 1. The point 0 is a second order pole and
/
1
: 2 / . .
= = = —= — . 1 .
Rezof = ligle SN =l |75 =l =1 a0
The point z = 1 is a first order pole and
. .o —1
Rez, f = ;;Hi(z —-1)f(z) = l% = —1. (10.6)

10.6 The residue theorem and some applications

10.6.1 If
v [a’ b] — (C_{ZO}

is a closed path not passing through zy then
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I (5552 + 7= + a0+ a1 (2 — 20) + a2 (2 — 20)? ) dz
7(( 0) (2—20) ) (10.7)

=a-1 [, zﬁ'ZZO = 2mia_1 n(zg,7)
for any a_s, a_1, ag, a1, as € C. The point 2 is an isolated singular point
(second order pole) for the function f: C—{z} — C,

IO = Gy * g TG ) b

and Rez,, f = a—;. The relation (10.7) can be written as
/f(z) dz = 2mi n(z0,7) Rezy, f.
g

10.6.2 Theorem (Residue Theorem). If D C C is an open set,
f:D—C

s a holomorphic function, S is the set of all the singular
isolated points of f and if

v : [a,b] — D

is a path homotopic to zero in D = DU S then

Af(z) dz = 2mi Z n(z,v)Rez,f.

zeS

A proof can be found in [?].

10.6.3 Exercise. Compute the integral

4dz
/w (22 +1)(z — 3)?

where
v:10,1] — C, v(t) = 2?1,
Solution. Consider the set D = C—{3, i, —i} and the holomorphic function

4
f:D—C, f(z):(z2+1)(z—3)2'
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AR
N

Figure 10.34: The path 7 : [0,1] — C, ~(t) = 22,

93

The set of all the isolated singular points of f is S = {3, i, —i} and the path = is

homotopic to zero in D U S = C. In view of the residue theorem we have

/ (22 + le)céz _ 3)2 = 2mi (’I’L(?), 7) ReZ3f + ’I’L(l, 7) Rezif + ’I’L(—l, ’Y) Rez,if) .
Y

Since the path v winds zero times around 3 and once around i and —i we get

n(3,7) =0, n(i,y) =n(-1i7) =1
whence (Figure 10.34)

/ ( 4dz 5 = 2ri (Rezif + Rez_i ).
y

22+ 1)(z—3)
The singular points i and —i being simple poles we have
. . . 4 4 3 4
Rezf =lim(z = 0)/(z) =l =T “5a-32 ~ 25 25
4 3 4
cz—if = lm (z+ /() = Im o= = Toigga2 25 T 25

and

/ 4dz 12 .
= —mi.
v (22+1)(2—-3)2 25
10.6.4 MATHEMATICA: Residuelf[z], {z, a}]
In[1] :=Residue[4/((z"2+1) (z-3)"2), {z, I}] > Out[l]=2-2

3
25
In[2] :=Residue[4/((z"2+1)(z-3)"2), {z, -I}] > Out]2]=Z+4

10.6.5 Exercitiu. Compute the integral
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Solution. Consider the holomorphic function
* eZ
f :C"— C, f(Z) = 2—3
defined on the open set C* = C—{0}. The singular point z = 0 is a third order pole.

In order to compute the residue at 0 of f we can use the Laurent expansion around 0

z 2 3
B =S=%(0+5+5+5+)

A db g gt
or the relation
1 : 3 Vi 1
ReZOf—iil_I)I(l)(Z f(2)) =3

By remarking that v winds twice around 0 clockwise or by using the formula

(0,4) 1 dz 5
n = — _ = =
Y 271 )y 2

we get

z
/ e—3 dz = 27in(0,v) Rezof = —2ni.
v Z

%

o

RS

Figure 10.35: The path ~.

10.6.6 Exercise. Compute the integral

[

where vy is the path shown in Figure 10.35 .
Rezolvare. The singular points of the holomorphic function

1
:C—-{0,1} — C =
are z = 0 si z = 1. We know that Rezof = 1 (see (10.5)) and Rez;f = —1 (see

(10.6)). By remarking that v winds twice about 0 and once about 1, in view of the
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residue theorem we have

1
/ 21— z) dz = 2mi (2Rezo f + Rez; f) = 2ni.
N -

10.6.7 Exercise. Compute the integral

2m 1
I :/ —dt where a € (1, 00)
0o a-cost

Solution. The integral can be regarded as a complex line integral and computed by

using the residue theorem. We have

_ [2 1 2 it/
I'=Jg emreﬂt dt = leit Yatel o1t (e) dt
a+—2
_ : 1 : 2
=15 +z+1 dz = =i |, gy d?

where v : [0,27] — C, ¥(¢) = e't. The function

f:C—{z1,2} — C, flz) = 2

22 4+ 2az+1
where

21 =—a+vVaz—1, 29 =—a—+Va?—1

are the roots of the polynomial z? + 2az + 1, has two isolated singular points (first

Al
]

Figure 10.36: The path « : [0,27] — C, ~(t) = e'’.

order poles) z; and zo.

Since z1, 29 are real numbers, —1 < z; < 0 and 29 < —1 we get n(z1,7) = 1 and
n(ze,v) =0 (Flgure 10.36). In view of the residue theorem

I= N mdz =2nRez,, f =2nlim, ., (2 — 21) f(2)

_ : _ 2 _ A4r 2
= 2m lim,_,, (2 21)(3_21)(2_22) =0t = T
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Figure 10.37: The paths ~;,.

10.6.8 Proposition. Consider a < 8 and a continuous function
f:D—C
defined on a domaine D containing the images of the paths ( Figure 10.57)
Y ¢ [a, ] — C, Y (t) = relt
for any r > 0. If
i 21 ()0

then
”lggo/w f(z)dz =0.
Proof. For any € > 0 there exists r. > 0 such that
|z| > re = |z f(2)| <e.

Particularly, for » > r. we have

R 6o 8
f(z)dz| = / flre®)rie dt g/ |f(re®)rie' |dt<6/ dt = (8 — a)e.
Tr [e% «@ «@
10.6.9 From the relations
|z1| = |21 — 22 + 22| < |21 — 22| + |22],
|z2| = |22 — 21 + 21| < |21 — 22| + |21]
we get
— |21 — 22| < |z1] — |z2] < |21 — 229
that is,

| [21] = |z2] | <21 — 22].
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10.6.10 Exercise. Compute the integral
2

= - d
pu— x
/o (2% 4+ 1)(2* + 4)
Solution. The integral is a real improper integral. The interval of integration is

unbounded, but the considered function is bounded. Since

__a?
lim EHDEHD
xr—r 00 %
X

the integrals

/OO ” d nd /Ooid
L @)@z ™ y 2™

are either both convergent or both divergent. We know that the improper integral

© 1
—d
/1 o

is convergent for A > 1. Therefore, the considered integral
2

00 1.2 1 T 00 T
I:/o (x2+1)(m2+4)dx:/0 (m2+1)(m2+4)dx+/1 D ™

is convergent.

2

Yr

e

—r v r

Figure 10.38: The paths ~;,.

In order to compute the value of the integral we consider the holomorphic function

22

(22 4+1)(22 +4)
and the path of integration shown in Figure 10.38 composed by

f:C—{-2i, —i,1i, 21} — C, flz)=

v+ [0,7] — C, v (t) = rett

and
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In view of the residue theorem, for any r > 2 we have the relation

/ f(z)dz + j f(z)dz = 27i (Rez;f + Rezy; f)

T

leading to

ll)m/ f(z)dz+/ f(z)dz = 27i (Rez;f + Rezy; f). (10.8)

oo Yr —00
Since

3 3 3
2 () = g = e

|22+ 1| [22+4] |22 = (D] |22 = (=4)] 7 |[2? = 1] - [[2]* = 4|

we have
Jim = 1) =0

and in view of the result presented at pag. 56-8
Jim . f(z)dz =0.
Since f(—x) = f(x), from the relation (10.8) we obtain
o
/ f(z)dx = i (Rezif + Rezo; f).
0

But
Rez; = lim(z — i) f(z) = limz—2 _1
o =i (z+1)(z24+4) 6
Rezg; = lim (z — 2i) f(z) = lim Z S
Y =21 (22 +1)(2 + 2i) 3
and hence

/Ooof(a:)dx:ﬂ'i (é—%) :%.

10.6.11 MATHEMATICA: Residue[f[z], {z, a}], Integrate[f[x], {x, a, b}]
In[1] :=Residue[z"2/((z"2 + 1) (z"2 + 4)), {z, I}] — Out[l}:%
In[2] :=Residue[z"2/((z"2 + 1) (z"2 + 4)), {z, I}] = Out[2]=—
In[3] :=Integrate[x"2/((x"2 + 1) (x"2 + 4)), {x, 0, Infinity}] +> Out[3]

i
3

_i
6

10.6.12 Exercise. Prove that

Solution. The function
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is a decreasing function because

t cost —sint
o) = =B

Vr

—r r
Figure 10.39: The paths ~,.

10.6.13 Proposition (Jordan’s lemma). If the continuous function
f{z=z+yi| y>0} —C
is such that

lim f(z)=0 (10.9)

Z—00
and

Ir: [0777] —C, 'Yr(t) =re
(Figure 10.39 ) then

lim / f(z)e*dz=0
Tr

T—00

Proof. Let € > 0. From the relation (10.9) it follows that there is € > 0 such that
2e

> Te = |f(reit)|<?
and
}f% f(Z) el? dz} _ ‘fg f(?” eit) eir(costJrisint)ireitdt}

< fO7T |f(’l“ eit)| e~ Tsint . gy < 2—75fr f(]7r e Tsint gz

2, (T T2t gy _ 2. -1 ,—7r2t
<Erfpemdt= Trgie
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TR
C Y
“R —r r R

Figure 10.40: The path used in the case of Poisson’s integral.

10.6.14 Exercise (Poisson’s integral). Prove that
00 o
/ e =2 (10.10)
0 2

x
Solution. Let 0 < r < R and the paths (Figure 10.40)
vr ¢ [0,7] — C, Yr(t) = Rel
¥ : [0, 7] — C, v (t) = rel™t),

From the residue theorem (or Cauchy’s theorem) it follows the relation

iz —r Az iz R iz
/ e—dz—l— e—dm—|— e—dz—|—/ e—dsz
5 r

r 2 _R T Y Z T
which can also be written as

iz iz R ,iz _ —iz
/e—dz—i—/ e—dz—i—/ £ % dr=0
YR ¥ Z r z

iz 1 iz _ 1 R &
/ e—dz—i—/ —dz—l—/ © dz+2i/ ST =0
YR R Yr z r z

By using the relation
1
/ —dz = —7i
Yr z

or

and denoting by g an antiderivative of the function f(z) = # we get
iz R o3
/ e —mi+ (g(r) —g(=r)) + 21/ T g = 0.

Since, in view of Jordan’s lemma,

for R — oo and 7 — 0 we get the relation

. [ sinz .
21 dx = mi.
0 z
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10.6.15 MATHEMATICA: Integratel[f[x], {x, a, b}]

In[1] :=Integrate[Sin[x]/x, {x, 0, Infinity}] > Out[l]=3

INE

Figure 10.41: The path used in the case of Fresnel’s integrals.

10.6.16 Fresnel’s integrals. By integrating the function
f(z) =
along the path shown in Figure 10.41 one can prove [?] that

o0 o0 1
/ cosx?dr = / sinz?de = =
0 0 2

10.6.17 MATHEMATICA: Integratelf[x], {x, a, b}]

v | 3

S

In[1] :=Integrate[Sin[x~2], {x, O, Infinity}] +> Out[l]=

V)
[SE

In[2] :=Integrate[Cos[x"2], {x, 0, Infinity}] > Out]2]="5

10.6.18 Definition. Let ¢ : R — C. The function (if exists)
&) .
FleliR— € Fpl©) = [ ey

—00

is called the Fourier transform of .

10.6.19 Exercise. Prouve that

for any a € (0, 00).

Solution. We have
2
}.[e_aﬁ](@ = /00 o 0% €T g0 /oo o arHiET g e_i_a /OO efa(m*i%)Qd:E.
—0Q —00
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Figure 10.42: The functions e7%x2, L

By starting from the integral

i € i €
r r—ig— r—ig— —r
42 2a  _ .2 2a P} a2
/e“tdt—}—/ eazdz—/ e ¥ dz+ e ¥ dz=0
—r T frfié —r—iz-
a 2a

of the function

f:C—C, f(z):efa‘z2

along the rectangular path shown in Figure 10.43 we prouve that

00 . 2 [e9) 1 00
/ e_a(tﬂ%) dt = / e~ dt = —/ e dy = \/f
—00 —00 \/a —00 a

We have

T t2 o t2
lim e @ dt:/ e " dt.
T — 00

r—oo J_

By choosing for the linear path connecting r with r — iz% the parametrization

€
: 10,1} — C t)=r —1it—
71 [a] ’ 71() r 12@

we obtain the relation

whence

r—is 1 . 2 1 . 2.2
/ 2a eiaZQdZ _ / e—a(r—lt%) (—l)édt — —lé efa,r2 / elrt£+%dt
r 0 2a 2a 0
¢
r—ig
lim e gy = 0
T—00 r

In a similar way one can prove that

By choosing for the linear path connecting —r —1i £

_r )
lim e ¥dz=0.
r—00 —r—is

2a

> with r— iz% the parametrization
§

v i [=r,r] — C, Ya(t) =t — i%
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Figure 10.43: The used rectangular path.

we obtain the relation

€
2a
whence
3
rT—15= o0 2
. 20  _ —alt—iL
lim e 9% dz—/ e a(t-iz;) dt
r—oo J_p 15{; —0

10.6.20 MATHEMATICA: The used definition f[go](x):\/% f:x’oo eitT o (t)dt

V2

4:-| "o

In[1] :=FourierTransform[Exp[-t~2], t, x] +> Out[l]==2
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