Chapter 10

Elements of Complex Analysis

10.1 Complex numbers

10.1.1 The set of complex numbers

$$\mathbb{C} = \mathbb{R} + \mathbb{R}i = \{ z = x + yi \mid x, y \in \mathbb{R} \}$$

considered together with the addition

$$(x + yi) + (x' + y'i) = (x + x') + (y + y')i$$

and multiplication by a real number

$$\alpha(x + yi) = \alpha x + \alpha yi$$

is a real vector space of dimension 2. The usual form of a complex number z = x + yi represents its expansion in the basis $\{1, i\}$. The linear isomorphism

$$\mathbb{R}^2 \longrightarrow \mathbb{C} : (x,y) \mapsto x + yi$$

allows us to identify the two real vector spaces and leads to a natural geometric interpretation of the complex numbers (the complex plane).

10.1.2 The relation $i^2 = -1$ allows us to define an additional operation in \mathbb{C}

$$(x + yi)(x' + y'i) = (xx' - yy') + (xy' + yx')i.$$

called the multiplication of complex numbers. The set $\mathbb C$ considered together with the addition and multiplication of complex numbers is a commutative field.

Particularly, any non-null complex number admits an inverse

$$(x+yi)^{-1} = \frac{1}{x+yi} = \frac{x-yi}{x^2+y^2} = \frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i.$$

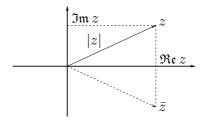


Figure 10.1: Conjugatul unui număr complex

10.1.3 Definition. Let z = x + yi be a complex number.

The number $\Re z = x$ is called the *real part* of z.

The number $\mathfrak{Im} z = y$ is called the *imaginary part* of z.

The number $\bar{z} = x - yi$ is called the *complex conjugate* of z.

The number $|z| = \sqrt{x^2 + y^2}$ is called the *modulus* of z.

10.1.4 MATHEMATICA Re[x+y I], Im[x+y I], Abs[x+y I], Conjugate[x+y I]

10.1.5 Proposition. The relations

$$\begin{aligned} \overline{z_1 \pm z_2} &= \overline{z}_1 \pm \overline{z}_2 & \overline{z_1} \ \overline{z_2} &= \overline{z}_1 \ \overline{z}_2 & \overline{(z^n)} &= (\overline{z})^n \\ |\overline{z}| &= |z| & |z|^2 &= z \ \overline{z} & \overline{(\overline{z})} &= z \\ \Re \mathfrak{e} \ z &= \frac{z + \overline{z}}{2} & \Im \mathfrak{m} \ z &= \frac{z - \overline{z}}{2 \, \mathrm{i}} & z &= \Re \mathfrak{e} \ z + \mathrm{i} \ \Im \mathfrak{m} \ z. \end{aligned}$$

are satisfied for any complex numbers z_1 , z_2 $\sin z$.

Proof. These relations are direct consequences of the previous definition.

10.1.6 For any φ , $\psi \in \mathbb{R}$ we have

$$(\cos\varphi + i\sin\varphi)(\cos\psi + i\sin\psi) = (\cos\varphi\cos\psi - \sin\varphi\sin\psi)$$
$$+i(\cos\varphi\sin\psi + \sin\varphi\cos\psi) = \cos(\varphi + \psi) + i\sin(\varphi + \psi).$$

By using Euler's notation

$$e^{it} = \cos t + i\sin t$$

the previous relation becomes

$$e^{i\varphi} e^{i\psi} = e^{i(\varphi+\psi)}$$
.

10.1.7 For any non-null number z=x+y ithere exists arg $z\in(-\pi,\pi]$ such that

$$z = |z|(\cos(\arg z) + i\sin(\arg z)) = |z| e^{i\arg z}.$$

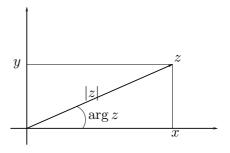


Figure 10.2: Modulus and the argument of a complex number.

The number arg z, called the *principal value* of the argument of z=x+yi, is

arg
$$z=\left\{ egin{array}{ll} & {
m arctg}\,\frac{y}{x} & {
m for} & x>0 \\ & \pi+{
m arctg}\,\frac{y}{x} & {
m for} & x<0, & y>0 \\ & -\pi+{
m arctg}\,\frac{y}{x} & {
m for} & x<0, & y<0 \\ & \frac{\pi}{2} & {
m for} & x=0, & y>0 \\ & \frac{\pi}{2} & {
m for} & x=0, & y<0. \end{array} \right.$$

10.1.8 MATHEMATICA Arg[x+y I], N[Arg[x+y I]]

10.1.9 The function

$$arg: \mathbb{C}^* \longrightarrow (-\pi, \pi]$$

4 Version 18 Apr 2020 (for updates see https://unibuc.ro/user/nicolae.cotfas/

is discontinuous on the negative half line

$$(-\infty,0) = \{ z \mid \Re z < 0, \Im z = 0 \}$$

because for $x \in (-\infty, 0)$ we have

$$\lim_{y \nearrow 0} \arg(x + y\mathbf{i}) = -\pi \qquad \text{and} \qquad \lim_{y \searrow 0} \arg(x + y\mathbf{i}) = \pi.$$

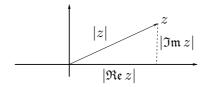


Figure 10.3: Relation among |z|, $|\Re z|$ and $|\Im z|$.

10.1.10 Proposition. For any complex number z = x + yi we have

$$\begin{vmatrix} |x| \\ |y| \end{vmatrix} \le |x+y\mathbf{i}| \le |x| + |y|$$

that is.

$$\left| rac{|\mathfrak{Re} \, z|}{|\mathfrak{Im} \, z|} \right. \ge |z| \le |\mathfrak{Re} \, z| + |\mathfrak{Im} \, z|.$$

Proof. We have

$$|x+y\mathbf{i}| = \sqrt{x^2+y^2} \ge \sqrt{x^2} = |x|$$
 $|x+y\mathbf{i}| = \sqrt{x^2+y^2} \ge \sqrt{y^2} = |y|$

and the inequality

$$\sqrt{x^2 + y^2} \le |x| + |y|$$

is equivalent with the obvious relation

$$x^2 + y^2 \le (|x| + |y|)^2$$
.

10.1.11 Proposition. The mapping $| \cdot | : \mathbb{C} \longrightarrow \mathbb{R}$,

$$|z| = |x + y\mathbf{i}| = \sqrt{x^2 + y^2}$$

is a norm in the real vector space \mathbb{C} , and $d: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}$

$$d(z_1, z_2) = |z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

is the corresponding distance.

Demonstrație. For any complex number z = x + yi we have

$$|z| = \sqrt{x^2 + y^2} \ge 0$$

and

$$|z| = 0 \iff z = 0.$$

If α is a real number then

$$|\alpha z| = |(\alpha x) + (\alpha y)i| = \sqrt{(\alpha x)^2 + (\alpha y)^2} = \sqrt{\alpha^2 (x^2 + y^2)} = |\alpha| |z|.$$

For any $z_1 = x_1 + y_1$ i and $z_2 = x_2 + y_2$ i we have

$$|z_1 + z_2|^2 = (z_1 + z_2)(\bar{z}_1 + \bar{z}_2) = |z_1|^2 + |z_2|^2 + z_1 \, \bar{z}_2 + \bar{z}_1 \, z_2$$

$$= |z_1|^2 + |z_2|^2 + 2\Re \epsilon \, (z_1 \, \bar{z}_2) \le |z_1|^2 + |z_2|^2 + 2|\Re \epsilon \, (z_1 \, \bar{z}_2)|$$

$$\le |z_1|^2 + |z_2|^2 + 2|z_1 \, \bar{z}_2| = (|z_1| + |z_2|)^2$$

whence

$$|z_1 + z_2| \le |z_1| + |z_2|.$$

10.1.12 If we consider \mathbb{R}^2 endowed with the usual norm

$$|| \ || : \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad ||(x,y)|| = \sqrt{x^2 + y^2}$$

then

$$||(x,y)|| = \sqrt{x^2 + y^2} = |x + yi.|$$

This means that the linear mapping

$$\mathbb{R}^2 \longrightarrow \mathbb{C}: (x,y) \mapsto x + yi$$

is an isomorphism which allows us to identify the normed vector spaces $(\mathbb{R}^2, ||\ ||)$ and $(\mathbb{C}, |\ |)$. If we take into consideration only the structure of vector space, the spaces $(\mathbb{R}^2, ||\ ||)$ and $(\mathbb{C}, |\ |)$ differ only in the used notations. The distance

$$d(z_1, z_2) = |z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

between two numbers $z_1=x_1+y_1{\rm i}$ and $z_2=x_2+y_2{\rm i}$ in the complex space correspond to the distance between the corresponding points in the Euclidean plane (Figure 10.4)

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

6 Version 18 Apr 2020 (for updates see https://unibuc.ro/user/nicolae.cotfas/

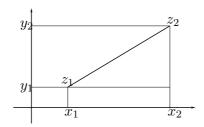


Figure 10.4: Distance between two points.

10.1.13 In the complex plane:

 $|z_1 - z_2| = \text{distance between } z_1 \text{ and } z_2.$

|z| = |z - 0| = distance between z and the origin.

Let $a \in \mathbb{C}$ be a fixed point and r > 0. The set

$$B_r(a) = \{ z \mid |z-a| < r \}$$

is called the (open) disk of center a and radius r (Figure 10.5).

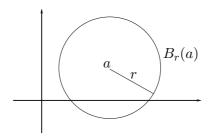


Figure 10.5: The disk of center a and radius r.

- **10.1.14 Definition.** We say that $M \subset \mathbb{C}$ is a bounded set if there exist $a \in \mathbb{C}$ and r > 0 such that $M \subseteq B_r(a)$.
- **10.1.15 Exercise.** M is a bounded set if and only if there exists r > 0 such that $|z| \le r$, for any $z \in M$.
- **10.1.16 Definition.** A set $D \subseteq \mathbb{C}$ is called an *open set* if for any $a \in D$ there exists r > 0 such that $B_r(a) \subset D$. A set $F \subseteq \mathbb{C}$ is called a *closed set* if $\mathbb{C} - F$ is an open set.

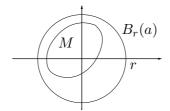


Figure 10.6: A bounded set.

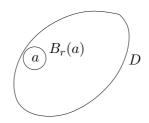


Figure 10.7: An open set.

10.1.17 Example.

- a) The open disk $B_1(0)$ is an open set.
- b) The half-plane { $z \mid \Im \mathfrak{m} \ z > 0$ } is an open set.
- c) Any finite set $F \subseteq \mathbb{C}$ is a closed set.
- d) The half-plane { $z \mid \Re z \ge 0$ } is a closed set.

10.1.18 Definition. A set $K \subseteq \mathbb{C}$ is called a *compact set* if it is a closed and bounded set.

10.1.19 Exercise. Prouve that the relations

a)
$$|z_1 z_2| = |z_1| |z_2|$$

$$||z_1| - |z_2|| \le |z_1 - z_2|$$

c)
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$

hold for any complex numbers z_1 and z_2 .

Solution. a) We have

$$(x_1x_2 - y_1y_2)^2 + (x_1y_2 + x_2y_1)^2 = (x_1^2 + y_1^2)(x_2^2 + y_2^2).$$

b) From

$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2|,$$
 $|z_2| = |z_2 - z_1 + z_1| \le |z_2 - z_1| + |z_1|$ we get the relation

$$-|z_1-z_2| \le |z_1|-|z_2| \le |z_1-z_2|$$

equivalent to

$$||z_1| - |z_2|| \le |z_1 - z_2|.$$

c) By direct computation we get

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = (z_1 + z_2)(\bar{z}_1 + \bar{z}_2) + (z_1 - z_2)(\bar{z}_1 - \bar{z}_2) = 2|z_1|^2 + 2|z_2|^2.$$

10.2 Sequences of complex numbers

10.2.1 Definition. We say that the sequence $(z_n)_{n\geq 0}$ converges to a and write

$$\lim_{n\to\infty} z_n = a$$

if

$$\lim_{n \to \infty} |z_n - a| = 0.$$

10.2.2 From the relation

we get

$$\lim_{n \to \infty} (x_n + y_n \mathbf{i}) = \alpha + \beta \mathbf{i} \quad \Longleftrightarrow \quad \begin{cases} \lim_{n \to \infty} x_n = \alpha \\ \lim_{n \to \infty} y_n = \beta. \end{cases}$$

that is, the sequence of complex numbers $(z_n)_{n\geq 0}$ converges if and only if the sequences of real numbers $(\Re \mathfrak{e} \, z_n)_{n\geq 0}$ and $(\Im \mathfrak{m} \, z_n)_{n\geq 0}$ are convergent, and

$$\lim_{n\to\infty} z_n = \lim_{n\to\infty} \Re \, z_n + \mathrm{i} \lim_{n\to\infty} \Im \, m \, z_n.$$

10.2.3 Example.

$$\lim_{n \to \infty} \left(\frac{n}{n+1} + \mathrm{i} \left(1 + \frac{1}{n} \right)^n \right) = \lim_{n \to \infty} \frac{n}{n+1} + \mathrm{i} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 1 + \mathrm{e} \mathrm{i}.$$

10.2.4 MATHEMATICA: Lim[z[n],n->Infinity]

In[1] := Lim[n/(n+1), n-> Infinity] \mapsto Out[1]=1 $In[2]:=Lim[(1+1/n)^n,n->Infinity]$ \mapsto Out[2]=e $In[3]:=Lim[n/(n+1)+I \ (1+1/n)^n,n->Infinity] \ \mapsto \ \operatorname{Out}[3]=1+ie$

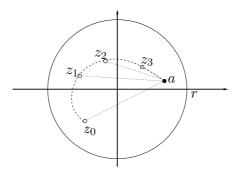


Figure 10.8: A bounded convergent sequence.

10.2.5 Definition. A sequence $(z_n)_{n\geq 0}$ is called a bounded sequence if there exists r > 0 such that

$$|z_n| \le r$$
, for any $n \ge 0$.

10.2.6 From the relation

$$\begin{vmatrix} |x_n| \\ |y_n| \end{vmatrix} \le |x_n + y_n \mathbf{i}| \le |x_n| + |y_n|$$

it follows that the sequence of complex numbers $(z_n)_{n\geq 0}$ is bounded if and only if the sequences of real numbers $(\mathfrak{Re}\ z_n)_{n\geq 0}$ and $(\mathfrak{Im}\ z_n)_{n\geq 0}$ are bounded.

10.2.7 Exercise. Prouve that

$$|z| < 1 \implies \lim_{n \to \infty} z^n = 0$$

a)
$$|z| < 1$$
 $\Longrightarrow \lim_{n \to \infty} z^n = 0$
b) $|z| < 1$ $\Longrightarrow \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$
c) $|z| < 1$ $\Longrightarrow \frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots$

c)
$$|z| < 1$$
 \Longrightarrow $\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots$

Solution. We have

$$\lim_{n \to \infty} |z^n - 0| = \lim_{n \to \infty} |z|^n = 0$$

$$\sum_{n=0}^{\infty} z^n = \lim_{k \to \infty} \sum_{n=0}^k z^n = \lim_{k \to \infty} \frac{1 - z^{k+1}}{1 - z} = \frac{1}{1 - z}$$

$$\frac{1}{1 - z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + z^3 + \cdots$$

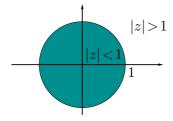


Figure 10.9: The set of all the points z with |z| < 1.

10.2.8 Definition. We say that the sequence $(z_n)_{n\geq 0}$ tends to infinity

$$\lim_{n\to\infty} z_n = \infty$$

if

$$\lim_{n\to\infty}|z_n|=\infty.$$

10.2.9 If |z| > 1 then $\lim_{n \to \infty} z^n = \infty$.

10.3 Complex functions of a complex variable

- **10.3.1** Complex function means a function with complex values.
- 10.3.2 Definition. We say that the function of a real variable

$$f:(a,b)\longrightarrow \mathbb{R}$$

is differentiable at the point $x_0 \in (a, b)$ if there exists and is finite the limit

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

called the *derivative* of the function f at the point x_0 .

Function		Derivative	Domain	Conditions
$f:\mathbb{R}\longrightarrow\mathbb{R}$	f(x) = c	f'(x) = 0	\mathbb{R}	
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = x^n$	$f'(x) = nx^{n-1}$	\mathbb{R}	$n \in \mathbb{N}^*$
$f:(0,\infty)\longrightarrow \mathbb{R}$	$f(x) = x^{\alpha}$	$f'(x) = \alpha x^{\alpha - 1}$	$(0,\infty)$	$\alpha \in \mathbb{R}$
$f:\mathbb{R}^*\longrightarrow\mathbb{R}$	$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*	
$f:[0,\infty)\longrightarrow \mathbb{R}$	$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$(0,\infty)$	
$f:[0,\infty)\longrightarrow \mathbb{R}$	$f(x) = \sqrt[n]{x}$	$f'(x) = \frac{1}{n\sqrt[n]{x^{n-1}}}$	$(0,\infty)$	$n \in 2\mathbb{N}^*$
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = \sqrt[n]{x}$	$f'(x) = \frac{n + 1}{n \sqrt[n]{x^{n-1}}}$	\mathbb{R}^*	$n\in 2\mathbb{N}+1$
$f:(0,\infty)\longrightarrow \mathbb{R}$	$f(x) = \ln x$	$f'(x) = \frac{1}{x}$	$(0,\infty)$	
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = a^x$	$f'(x) = a^x \ln a$	\mathbb{R}	$0 < a \neq 1$
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = e^x$	$f'(x) = e^x$	\mathbb{R}	
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = \sin x$	$f'(x) = \cos x$	\mathbb{R}	
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = \cos x$	$f'(x) = -\sin x$	\mathbb{R}	
$f: \mathbb{R} - (\frac{\pi}{2} + \mathbb{Z}\pi) \to \mathbb{R}$	$f(x) = \tan x$	$f'(x) = \frac{1}{\cos^2 x}$	$\mathbb{R}-\left(\frac{\pi}{2}+\mathbb{Z}\pi\right)$	
$f: \mathbb{R} - \mathbb{Z}\pi \longrightarrow \mathbb{R}$	$f(x) = \cot x$	$f'(x) = -\frac{1}{\sin^2 x}$	$\mathbb{R} - \mathbb{Z}\pi$	
$f:[-1,1]\longrightarrow \mathbb{R}$	$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$	(-1,1)	
$f:[-1,1]\longrightarrow \mathbb{R}$	$f(x) = \arccos x$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$	(-1,1)	
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = \arctan x$	$f'(x) = \frac{1}{1+x^2}$	\mathbb{R}	
$f\!:\!\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = \operatorname{arccot} x$	$f'(x) = -\frac{1}{1+x^2}$	\mathbb{R}	
$f\!:\!\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = \operatorname{sh} x$	$f'(x) = \operatorname{ch} x$	\mathbb{R}	
$f:\mathbb{R}\longrightarrow\mathbb{R}$	$f(x) = \operatorname{ch} x$	$f'(x) = \operatorname{sh} x$	\mathbb{R}	

10.3.4 Previous definition can not be directly extended to functions of two variables

$$f:D\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}$$

because the relation

$$f'(x_0, y_0) = \lim_{(x,y)\to(x_0, y_0)} \frac{f(x,y) - f(x_0, y_0)}{(x,y) - (x_0, y_0)}$$

is meaningless (divison by the vector $(x, y) - (x_0, y_0)$ is not defined). But, the possibility to divide by a non-null complex number allows us to define the differentiability of a function of complex variable by following the analogy with the real case.

10.3.5 **Definition.** Let $D \subseteq \mathbb{C}$ be an open set. We say that the complex function

$$f:D\longrightarrow \mathbb{C}$$

is complex-differentiable (or \mathbb{C} -differentiable) at the point $z_0 \in D$ if there exists and is finite the limit

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

called the *derivative* of f at z_0 . Instead of $f'(z_0)$ we sometimes write $\frac{df}{dz}(z_0)$.

10.3.6 Example. The function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = z^3$$

is \mathbb{C} -differentiable at any point $z_0 \in \mathbb{C}$

$$f'(z_0) = \lim_{z \to z_0} \frac{z^3 - z_0^3}{z - z_0} = \lim_{z \to z_0} (z^2 + z_0 z + z_0^2) = 3z_0^2$$

and $f'(z) = 3z^2$, that is, we have

$$(z^3)' = 3z^2.$$

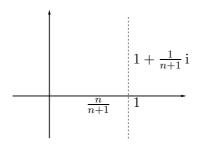


Figure 10.10: The function $f(z) = \bar{z}$ is not \mathbb{C} -differentiable at $z_0 = 1$.

10.3.7 The function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = \bar{z}$$

is not \mathbb{C} -differentiable at the point $z_0=1$ because the limit

$$\lim_{z \to 1} \frac{\bar{z} - 1}{z - 1}$$

does not exist. By choosing the sequence $z_n=\frac{n}{n+1}$ with $\lim_{n\to\infty}z_n=1$ we get $\lim_{n\to\infty}\frac{\bar{z}_n-1}{z_n-1}=1$

$$\lim_{n \to \infty} \frac{\bar{z}_n - 1}{z_n - 1} = 1$$

but, by choosing the sequence $z_n = 1 + \frac{1}{n+1}i$ also with $\lim_{n\to\infty} z_n = 1$ we get $\lim_{n\to\infty} \frac{\bar{z}_n - 1}{z_n - 1} = -1.$

$$\lim_{n \to \infty} \frac{\bar{z}_n - 1}{z_n - 1} = -1.$$

10.3.8 Based on the identification of $\mathbb C$ with $\mathbb R^2$

$$\mathbb{C} \longrightarrow \mathbb{R}^2 : x + yi \mapsto (x, y)$$

we can describe any complex function of a complex variable

$$f:D\longrightarrow\mathbb{C}$$

by using two real functions of two real variables

$$f(x+yi) = u(x,y) + v(x,y)i$$

where

$$u = \mathfrak{Re} \ f : D \longrightarrow \mathbb{R}$$
 is the real part of f

 $v = \mathfrak{Im} \ f : D \longrightarrow \mathbb{R}$ is the imaginary part of f.

10.3.9 Examples. a) In the case of the function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = \bar{z}$$

we have

$$f(x+yi) = x - yi$$

that is,

$$u(x,y) = x, \qquad v(x,y) = -y.$$

b) In the case of the function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = z^2$$

we have

$$f(x + yi) = (x + yi)^2 = (x^2 - y^2) + 2xyi$$

and hence

$$u(x,y) = x^2 - y^2,$$
 $v(x,y) = 2xy.$

10.3.10 In view of the definition, the function

$$f: D \longrightarrow \mathbb{C}, \qquad f(x+yi) = u(x,y) + v(x,y) i$$

is \mathbb{C} -differentiable at $z_0 = x_0 + y_0$ i if and only if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists and is finite. In order to have

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \alpha + \beta i$$

it is necessary to have

$$\lim_{t \to 0} \frac{f(z_0 + t) - f(z_0)}{t} = \alpha + \beta i, \qquad \lim_{t \to 0} \frac{f(z_0 + ti) - f(z_0)}{ti} = \alpha + \beta i$$

that is, the relations

$$\lim_{t \to 0} \frac{u(x_0 + t, y_0) - u(x_0, y_0)}{t} + \lim_{t \to 0} \frac{v(x_0 + t, y_0) - v(x_0, y_0)}{t} \mathbf{i} = \alpha + \beta \mathbf{i}$$

$$\lim_{t \to 0} \frac{u(x_0, y_0 + t) - u(x_0, y_0)}{ti} + \lim_{t \to 0} \frac{v(x_0, y_0 + t) - v(x_0, y_0)}{ti} i = \alpha + \beta i$$

equivalent to

$$\frac{\partial u}{\partial x}(x_0, y_0) = \alpha = \frac{\partial v}{\partial y}(x_0, y_0), \qquad \frac{\partial v}{\partial x}(x_0, y_0) = \beta = -\frac{\partial u}{\partial y}(x_0, y_0).$$

Particularly, if f is C-derivable at $z_0 = x_0 + y_0$ i then

$$f'(x_0 + y_0 \mathbf{i}) = \frac{\partial u}{\partial x}(x_0, y_0) + \frac{\partial v}{\partial x}(x_0, y_0) \mathbf{i}.$$

10.3.11 Theorem (Cauchy-Riemann) The function

$$f: D \longrightarrow \mathbb{C}, \qquad f(x+yi) = u(x,y) + v(x,y) i$$

defined on the open set $D \subseteq \mathbb{C}$ is \mathbb{C} -differentiable at the point $z_0 = x_0 + y_0 \mathbf{i} \in D$ if and only if the real functions

$$u:D\longrightarrow \mathbb{R}, \qquad v:D\longrightarrow \mathbb{R}$$

are \mathbb{R} -differentiable at (x_0, y_0) and the Cauchy-Riemann relations

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0), \qquad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

are satisfied. If all these conditions are satisfied then

$$f'(x_0 + y_0 \mathbf{i}) = \frac{\partial u}{\partial x}(x_0, y_0) + \frac{\partial v}{\partial x}(x_0, y_0) \mathbf{i}.$$

A proof can be found in [?].

10.3.12 Definition. Let $D \subseteq \mathbb{C}$ be an open set. A function

$$f:D\longrightarrow\mathbb{C}$$

is called \mathbb{C} -differentiable (or holomorphic) if it is \mathbb{C} -differentiable at any point of D.

10.3.13 Exercise. Prove that the function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = z^2$$

is holomorphic and find its derivative f'(z).

Solution. We use the Cauchy-Riemann theorem. We have

$$f(x + yi) = (x + yi)^2 = (x^2 - y^2) + 2xyi$$

and hence

$$u(x,y) = x^2 - y^2, v(x,y) = 2xy.$$

The functions u and v are \mathbb{R} -differentiable at any point and

$$\frac{\partial u}{\partial x}(x,y) = 2x = \frac{\partial v}{\partial y}(x,y), \qquad \frac{\partial u}{\partial y}(x,y) = -2y = -\frac{\partial v}{\partial x}(x,y).$$

The derivative of f is

$$f'(x+yi) = \frac{\partial u}{\partial x}(x,y) + \frac{\partial v}{\partial x}(x,y)i = 2x + 2yi$$

that is, f'(z) = 2z.

10.3.14 Exercise. Prove that the function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = \bar{z}$$

is not C-differentiable.

Solution. We use the Cauchy-Riemann theorem. We have

$$f(x + yi) = x - yi$$

that is,

$$u(x,y) = x,$$
 $v(x,y) = -y.$

In this case the Cauchy-Riemann relations are verified at no point because

$$\frac{\partial u}{\partial x}(x,y) = 1, \qquad \frac{\partial v}{\partial y}(x,y) = -1.$$

10.3.15 Definition. The function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = e^z$$

where

$$e^{x+yi} = e^x e^{yi} = e^x (\cos y + i \sin y) = e^x \cos y + i e^x \sin y$$

is called the (complex) exponential function.

10.3.16 MATHEMATICA: $Exp[x+y\, I]$, $N[Exp[x+y\, I]]$

 $\begin{array}{lll} \text{In[1]:=Exp[x+y I]} & \mapsto & \text{Out[1]=}e^{x+iy} \end{array}$

 $\texttt{In[2]:=ComplexExpand[Exp[x+y \ I]]} \quad \mapsto \quad \mathrm{Out[2]=} e^x \, \mathrm{Cos[y]} + i \, e^x \, \mathrm{Sin[y]}$

In[3] := Exp[2+3 I] $\rightarrow Out[3] = e^{2+3i}$

In[4] := N[Exp[2+3 I]] \mapsto Out[4] = -7.31511 + 1.04274 i

 $\label{eq:continuous} \mbox{In[5]:=N[Exp[2+3 I],15]} \qquad \qquad \mapsto \quad \mbox{Out[5]=-7.31511009490110+1.04274365623590 in a continuous conti$

10.3.17 The exponential function is a periodic function with the period $2\pi i$

$$e^{z+2\pi i} = e^z$$

and

$$e^{z_1+z_2} = e^{z_1} e^{z_2}$$

for any $z_1, z_2 \in \mathbb{C}$.

10.3.18 Exercise. Prove that the exponential function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = e^z$$

is holomorphic and

$$(e^z)' = e^z$$
.

Solution. We use the Cauchy-Riemann theorem. From the relation

$$f(x + yi) = e^x \cos y + i e^x \sin y$$

we get $u(x,y) = e^x \cos y$ and $v(x,y) = e^x \sin y$. The real functions u and v are \mathbb{R} -differentiable at any point and

$$\frac{\partial u}{\partial x}(x,y) = \mathrm{e}^x \, \cos y = \frac{\partial v}{\partial y}(x,y), \qquad \frac{\partial u}{\partial y}(x,y) = -\mathrm{e}^x \, \sin y = -\frac{\partial v}{\partial x}(x,y).$$

The derivative of f is

$$f'(z) = f'(x+yi) = \frac{\partial u}{\partial x}(x,y) + \frac{\partial v}{\partial x}(x,y)i = e^x \cos y + i e^x \sin y = e^z.$$

10.3.19 Exercise. Find the holomorphic function

$$f:\mathbb{C}\longrightarrow\mathbb{C}$$

satisfying the conditions

$$\mathfrak{Im} f(x,y) = 2xy + y,$$
 $f(i) = i.$

Solution. By looking for a function f of the form

$$f(x+yi) = u(x,y) + (2xy+y)i$$

from the Cauchy-Riemann theorem we deduce the relations

$$\frac{\partial u}{\partial x}(x,y) = 2x + 1, \qquad \frac{\partial u}{\partial y}(x,y) = -2y$$

whence $u(x,y) = x^2 - y^2 + x + c$, where c is a constant. By imposing the additional conditions f(i) = i we get

$$f(x+yi) = x^2 - y^2 + x + 1 + (2xy+y)i = (x+yi)^2 + (x+yi) + 1$$
that is, $f(z) = z^2 + z + 1$.

10.3.20 a) If the functions $f, g: D \longrightarrow \mathbb{C}$ are holomorphic then

$$(\alpha f \pm \beta g)' = \alpha f' \pm \beta g' \qquad (fg)' = f'g + fg'$$

for any $\alpha, \beta \in \mathbb{C}$. If, in addition, $g(z) \neq 0$ for any $z \in D$, then

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

b) If the functions $D \xrightarrow{f} \mathbb{C} \xrightarrow{g} \mathbb{C}$ are holomorphic then

$$\frac{d}{dz}(g(f(z))) = g'(f(z)) f'(z).$$

10.3.21 MATHEMATICA D[f[z],z]

$$\begin{split} &\text{In[1]:=D[a f[z]+b g[z],z]} & \mapsto & \text{Out[1]=a f'[z]+b g'[z]} \\ &\text{In[2]:=D[f[z] g[z],z]} & \mapsto & \text{Out[2]=f'[z] g[z]+f[z] g'[z]} \\ &\text{In[3]:=D[f[z]/g[z],z]} & \mapsto & \text{Out[3]=} \frac{f'[z]}{g[z]} - \frac{f[z] g'[z]}{g[z]^2} \\ &\text{In[4]:=D[g[f[z]],z]} & \mapsto & \text{Out[4]=} g'[f[z]] f'[z] \end{split}$$

10.3.22 Exercise. The complex functions

$$\cos:\mathbb{C}\longrightarrow\mathbb{C},\qquad \cos z=\frac{\mathrm{e}^{\mathrm{i}z}+\mathrm{e}^{-\mathrm{i}z}}{2}$$

$$\sin:\mathbb{C}\longrightarrow\mathbb{C},\qquad \sin z=\frac{\mathrm{e}^{\mathrm{i}z}-\mathrm{e}^{-\mathrm{i}z}}{2\mathrm{i}}$$

$$\mathrm{ch}:\mathbb{C}\longrightarrow\mathbb{C},\qquad \mathrm{ch}\,z=\frac{\mathrm{e}^z+\mathrm{e}^{-z}}{2}$$

$$\mathrm{sh}:\mathbb{C}\longrightarrow\mathbb{C},\qquad \mathrm{sh}\,z=\frac{\mathrm{e}^z-\mathrm{e}^{-z}}{2}$$
 are holomorphic and

$$(\cos z)' = -\sin z \qquad (\sin z)' = \cos z$$

$$(\operatorname{ch} z)' = \operatorname{sh} z$$
 $(\operatorname{sh} z)' = \operatorname{ch} z.$

Hint. Direct computation.

10.3.23 MATHEMATICA D[f[z],z]

10.3.24 MATHEMATICA Figura 10.11 s-a obținut utilizând

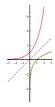


Figure 10.11: The natural logarithm ln is the inverse of the exponential function e^x .

10.3.25 The real exponential function

$$\mathbb{R} \longrightarrow (0, \infty) : x \mapsto e^x$$

is bijective. Its inverse is the natural logarithm function

$$(0,\infty) \longrightarrow \mathbb{R}: x \mapsto \ln x.$$

We have

$$x = e^{\ln x}$$

for any $x \in (0, \infty)$. In the complex case, we can obtain a rather similar relation

$$z = |z| e^{i \operatorname{arg} z} = e^{\ln|z|} e^{i \operatorname{arg} z} = e^{\ln|z| + i(\operatorname{arg} z + 2k\pi)}$$

satisfied for any $k \in \mathbb{Z}$.

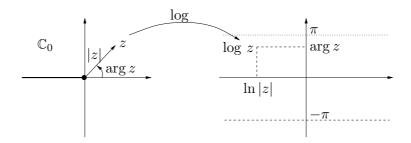


Figure 10.12: The principal branch $\log z = \ln |z| + i \arg z$.

10.3.26 Definition. Let us consider the set

$$\mathbb{C}_0 = \mathbb{C} - \{ z \mid \mathfrak{Im} \ z = 0, \ \mathfrak{Re} \ z \leq 0 \}$$

obtained by removing from $\mathbb C$ the "cut" $\{z\mid \mathfrak{Im}\ z=0,\ \mathfrak{Re}\ z\leq 0\}$ connecting 0 with ∞ . The continuous functions

$$\log_k : \mathbb{C}_0 \longrightarrow \mathbb{C}, \qquad \log_k z = \ln|z| + \mathrm{i}(\arg z + 2k\pi)$$

depending on the parameter $k \in \mathbb{Z}$ are called the branches of the complex logarithmic function. The principal branch \log_0 is usually denoted by \log , that is,

$$\log : \mathbb{C}_0 \longrightarrow \mathbb{C}, \qquad \log z = \ln |z| + i \arg z.$$

10.3.27 MATHEMATICA ComplexExpand[Log[x+I y]]

$$\begin{split} &\text{In[1]:=ComplexExpand[Log[x+I y]]} & \mapsto & \text{Out[1]=i Arg[x+iy]} + \frac{1}{2} \text{Log[x}^2 + y^2]} \\ &\text{In[2]:=ComplexExpand[Log[1+I]]} & \mapsto & \text{Out[2]=} \frac{i\,\pi}{4} + \frac{\text{Log[2]}}{2} \end{split}$$

In[3]:=N[ComplexExpand[Log[1+I]]] \mapsto Out[3]=0.346574+0.785398 i

 ${\tt In[4]:=N[ComplexExpand[Log[1+I]],10]} \quad \mapsto \quad {\tt Out[4]=0.3465735903+0.7853981634} \ in[4]:={\tt N[ComplexExpand[Log[1+I]],10]} \ \mapsto \quad {\tt N[Comple$

10.3.28 At the level of the cut $\{z \mid \mathfrak{Im} z=0, \mathfrak{Re} z\leq 0\}$ we have

$$\lim_{t \nearrow 0} \log(-2+t\mathrm{i}) = \ln 2 - \mathrm{i}\pi \qquad \text{and} \qquad \lim_{t \searrow 0} \log(-2+t\mathrm{i}) = \ln 2 + \mathrm{i}\pi.$$

Therefore, log can not be extended by continuity at the points of the cut.

10.3.29 MATHEMATICA Limit[Log[-2 + t I], t -> 0, Direction -> 1]

$$\begin{split} & \text{In[1]:=Limit[Log[-2 + t I], t -> 0, Direction -> 1]} & \mapsto & \text{Out[1]=-i}\,\pi + \text{Log[2]} \\ & \text{In[2]:=Limit[Log[-2 + t I], t -> 0, Direction -> -1]} & \mapsto & \text{Out[2]=i}\,\pi + \text{Log[2]} \\ & \text{Log[2]=i}\,\pi + \text{Log[2]=i}\,\pi + \text{Log[2]} \\ & \text{Log[2]=i}\,\pi + \text{Log$$

Exercise. Prove that

$$(\log_k z)' = \frac{1}{z}.$$

Solution. By denoting $f(z) = \log_k z = u(x, y) + i v(x, y)$ we get the relations

$$\frac{\partial u}{\partial x}(x,y) = \frac{x}{x^2 + y^2} = \frac{\partial v}{\partial y}(x,y), \qquad \frac{\partial u}{\partial y}(x,y) = \frac{y}{x^2 + y^2} = -\frac{\partial v}{\partial x}(x,y)$$

whence

$$f'(x+yi) = \frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y) = \frac{x-yi}{x^2+y^2} = \frac{1}{x+yi}.$$

10.3.30 The branches of the power function z^{α} with complex exponent α are

$$\mathbb{C}_0 \longrightarrow \mathbb{C}: z \mapsto z^{\alpha} = e^{\alpha \log_k z}.$$

In the case $\alpha = \frac{1}{n}$ with $n \in \mathbb{N}^*$ there exist only n distinct branches

$$\mathbb{C}_0 \longrightarrow \mathbb{C}: z \mapsto z^{\frac{1}{n}} = e^{\frac{1}{n}\log_k z} = \sqrt[n]{|z|} e^{\frac{i}{n}(\arg z + 2k\pi)}$$

for example, those corresponding to $k \in \{0, 1, ..., n-1\}$.

10.3.31 MATHEMATICA ComplexExpand[Sqrt[x+I y]]

In[1]:=ComplexExpand[Sqrt[x+I y]]

$$\mapsto \operatorname{Out}[1] = (x^2 + y^2)^{1/4} \operatorname{Cos} \left[\tfrac{1}{2} \operatorname{Arg}[x + iy] \right] + i(x^2 + y^2)^{1/4} \operatorname{Sin} \left[\tfrac{1}{2} \operatorname{Arg}[x + iy] \right]$$

$$\texttt{In[2]:=ComplexExpand[Sqrt[1+I]]} \qquad \mapsto \qquad \texttt{Out[2]=}2^{1/2}\texttt{Cos}\big[\frac{\pi}{8}\big] + \texttt{i}\,2^{1/2}\texttt{Sin}\big[\frac{\pi}{8}\big]$$

$$In[4]:=Limit[Sqrt[-1 + I x], x \rightarrow 0, Direction \rightarrow 1] \qquad \mapsto \qquad Out[4]=-i$$

$$In[5]:=Limit[Sqrt[-1 + I x], x \rightarrow 0, Direction \rightarrow -1] \qquad \mapsto \qquad Out[5]=i$$

10.3.32 MATHEMATICA ComplexExpand[(x + I y)^(1/n)]

$$\begin{split} &\text{In[1]:=ComplexExpand[(x + I y)^(1/3)]} \\ &\mapsto \operatorname{Out[1]=}(x^2 + y^2)^{\frac{1}{2n}} \operatorname{Cos}\left\lceil \frac{\operatorname{Arg}[x + iy]}{n} \right\rceil + i(x^2 + y^2)^{\frac{1}{2n}} \operatorname{Sin}\left\lceil \frac{\operatorname{Arg}[x + iy]}{n} \right\rceil \end{split}$$

10.3.33 Exercise. Describe the branch of the function

$$f(z) = \sqrt[3]{\frac{z}{i-z}}$$
 with $f(1) = \frac{1}{\sqrt[6]{2}} e^{i\frac{5\pi}{12}}$.

Solution. We have

$$\frac{z}{\mathsf{i}-z}\in\mathbb{C}_0$$

if and only if z belongs to the domain

$$D = \mathbb{C} - [0, \mathbf{i}] = \mathbb{C} - \{ z \mid \Re \mathfrak{e} z = 0, \quad 0 \le \Im \mathfrak{m} z \le 1 \}$$

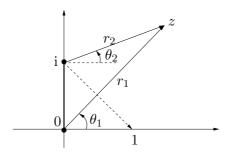


Figure 10.13: The relation $z = r_1 e^{i\theta_1} = i + r_2 e^{i\theta_2}$.

obtained by removing from \mathbb{C} the "cut" [0, i]. By denoting

$$z = r_1 e^{i\theta_1} = i + r_2 e^{i\theta_2}$$

we get $i - z = -r_2 e^{i\theta_2} = r_2 e^{i(\theta_2 + \pi)}$ and

$$f(z) = \sqrt[3]{\frac{r_1}{r_2}} e^{i\frac{\theta_1 - \theta_2 - \pi + 2k\pi}{3}}.$$

From $1 = e^{i0} = i + \sqrt{2} e^{-i\frac{\pi}{4}}$ it follows k = 1 and hence

$$f(z) = \sqrt[3]{\frac{r_1}{r_2}} e^{i\frac{\theta_1 - \theta_2 + \pi}{3}}.$$

10.4 Complex line integral

10.4.1 Proposition. Let $D \subseteq \mathbb{C}$. The complex mapping

$$\gamma: [a, b] \longrightarrow D, \qquad \gamma(t) = \varphi(t) + \psi(t) i$$

is continuous if and only if the real mappings

$$\varphi = \mathfrak{Re} \ \gamma : [a,b] \longrightarrow \mathbb{R}, \qquad \psi = \mathfrak{Im} \ \gamma : [a,b] \longrightarrow \mathbb{R}$$

 $are\ continuous.$

Proof. The statement follows from the relation

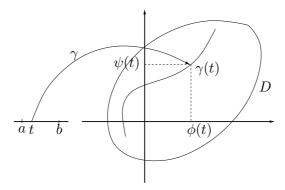


Figure 10.14: Path of class C^1 in D.

10.4.2 Definition. A mapping

$$\gamma:(a,b)\longrightarrow D$$

is differentiable at the point $t_0 \in (a, b)$ if there exists and is finite the limit

$$\gamma'(t_0) = \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}.$$

The mapping γ is called *differentiable* if it is differentiable at any point.

10.4.3 In the case of a mapping

$$\gamma: [a,b] \longrightarrow D$$

the derivateives $\gamma'(a)$ and $\gamma'(b)$ are defined as

$$\gamma'(a) = \lim_{t \to a} \frac{\gamma(t) - \gamma(a)}{t - a}, \qquad \gamma'(b) = \lim_{t \to b} \frac{\gamma(t) - \gamma(b)}{t - b}.$$

10.4.4 Proposition. The mapping

$$\gamma: [a, b] \longrightarrow D, \qquad \gamma(t) = \varphi(t) + \psi(t) i$$

is diferrentiable if and only if the real mappings

$$\varphi = \mathfrak{Re} \; \gamma : [a,b] \longrightarrow \mathbb{R}, \qquad \psi = \mathfrak{Im} \; \gamma : [a,b] \longrightarrow \mathbb{R}$$

are differentiable, and

$$\gamma'(t) = \varphi'(t) + \psi'(t) i.$$

Proof. We have

$$\gamma'(t_0) = \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0} = \lim_{t \to t_0} \frac{\varphi(t) - \varphi(t_0)}{t - t_0} + \lim_{t \to t_0} \frac{\psi(t) - \psi(t_0)}{t - t_0} i.$$

10.4.5 Definition. Let $D \subseteq \mathbb{C}$. A path of class C^1 in D is a differentiable mapping

$$\gamma: [a,b] \longrightarrow D$$

with continuous derivative $\gamma': [a, b] \longrightarrow \mathbb{C}$.

10.4.6 Examples.

a) For any $z \in \mathbb{C}$, the constant mapping

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = z$$

is a path of class C^1 in \mathbb{C} (called a *constant path*).

b) For any complex numbers z_1 and z_2 the mapping

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = (1-t)z_1 + tz_2$$

is a path of class C^1 in \mathbb{C} (called the *linear path* connecting z_1 with z_2).

c) For any $z_0 = x_0 + y_0 i \in \mathbb{C}$ and r > 0 teh mapping

$$\gamma: [0, 2\pi] \longrightarrow \mathbb{C}, \qquad \gamma(t) = z_0 + r e^{it} = x_0 + r \cos t + (y_0 + r \sin t)i$$

is a path of class C^1 in \mathbb{C} (called the *circular path* of radius r and center z_0).

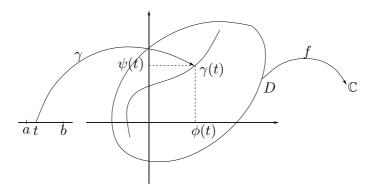


Figure 10.15: Complex line integral.

10.4.7 Definition. Let $f: D \to \mathbb{C}$ be a continuous function and $\gamma: [a, b] \longrightarrow D$ a path of class C^1 in D. The *complex line integral* of the function f along the path γ (see Figure 10.16) is the number

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

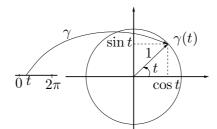


Figure 10.16: The path $\gamma(t) = e^{it} = \cos t + i \sin t$.

10.4.8 Exercise. Consider the function

$$f:\mathbb{C}^*\longrightarrow\mathbb{C}, \qquad f(z)=\frac{1}{z}$$
 where $\mathbb{C}^*=\mathbb{C}-\{0\}$ and the path of class C^1
$$\gamma:[0,2\pi]\longrightarrow\mathbb{C}^*, \qquad \gamma(t)=\mathrm{e}^{\mathrm{i}t}=\cos t+\mathrm{i}\,\sin t.$$

Compute

$$\int_{\gamma} f(z)dz.$$

Solution. Since $f(\gamma(t)) = \frac{1}{\gamma(t)} = e^{-it}$ and $\gamma'(t) = ie^{it}$ we get $\int_{\gamma} f(z)dz = \int_{0}^{2\pi} f(\gamma(t)) \gamma'(t) dt = \int_{0}^{2\pi} e^{-it} i e^{it} dt = 2\pi i.$

10.4.9 In the case of a constant path $\gamma(t)=z$ we have $\gamma'(t)=0$ and hence $\int_{\mathbb{R}} f(z) \, dz = 0$

for any function f.

10.4.10 If
$$f(x+yi) = u(x,y) + v(x,y)i$$
 and $\gamma(t) = \varphi(t) + \psi(t)i$ then
$$\int_{\gamma} f(z)dz = \int_{a}^{b} [u(\varphi(t),\psi(t))\varphi'(t) - v(\varphi(t),\psi(t))\psi'(t)] dt + i \int_{a}^{b} [u(\varphi(t),\psi(t))\psi'(t) + v(\varphi(t),\psi(t))\varphi'(t)] dt.$$

10.4.11 Exercise. Compute

$$\int_{\gamma} \bar{z} \, dz$$

where γ is the linear path connecting $z_1 = 1$ with $z_2 = i$.

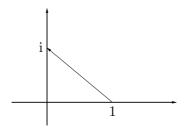


Figure 10.17: The linear path connecting 1 with i.

Solution. Since

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = (1-t)1 + ti$$

we get the relations $f(\gamma(t)) = \overline{\gamma(t)} = 1 - t - ti$ and $\gamma'(t) = -1 + i$ whence

$$\int_{\gamma} \bar{z} \, dz = \int_{0}^{1} (1 - t - ti)(-1 + i) dt = \int_{0}^{1} (-1 + 2t) dt + i \int_{0}^{1} dt = i.$$

10.4.12 MATHEMATICA: Integral along a closed polygonal path

 $\label{eq:conjugate} In [1] := Integrate [Conjugate[z], \{z, 1, I\}] \qquad \mapsto \quad \mathrm{Out}[1] = i$

In[2]:=Integrate[1/z, {z, 1, I, -1, -I, 1}] $\mapsto \text{Out}[2]=2 i \pi$

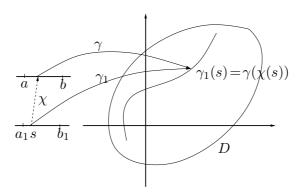


Figure 10.18: Equivalent paths.

10.4.13 Definition. Let $D \subseteq \mathbb{C}$ be a subset. Two paths of class C^1

$$\gamma: [a,b] \longrightarrow D$$
 and $\gamma_1: [a_1,b_1] \longrightarrow D$

are equivalent if there exists a bijective, differentiable and increasing mapping

$$\chi: [a_1, b_1] \longrightarrow [a, b]$$

such that

$$\gamma_1(s) = \gamma(\chi(s)), \quad \text{for any } s \in [a_1, b_1].$$

10.4.14 The defined relation is an equivalence relation wich allows to divide the set of all the paths into equivalence classes. Each equivalence class represents a *curve*. The elements of the class are all the possible *parametrizations* of the considered curve.

10.4.15 Proposition. If

$$f:D\longrightarrow \mathbb{C}$$

is a continuous function and if the paths of class C^1

$$\gamma: [a,b] \longrightarrow D, \qquad \gamma_1: [a_1,b_1] \longrightarrow D$$

are equivalent then

$$\int_{\gamma} f(z) \, dz = \int_{\gamma_1} f(z) \, dz$$

that is, the value of the integral depends on the curve, but not on the particular parametrization we choose.

Demonstrație. By using a change of variable we get

$$\int_{\gamma_1} f(z) dz = \int_{a_1}^{b_1} f(\gamma_1(s)) \gamma_1'(s) ds$$

= $\int_{a_1}^{b_1} f(\gamma(\chi(s))) \gamma'(\chi(s)) \chi'(s) ds = \int_a^b f(\gamma(t)) \gamma'(t) dt = \int_{\gamma} f(z) dz.$

10.4.16 Any path

$$\gamma: [a,b] \longrightarrow D$$

is equivalent to a path defined on [0, 1], namely,

$$\gamma_0: [0,1] \longrightarrow D, \qquad \gamma_0(t) = \gamma((1-t)a + tb).$$

10.4.17 Definition. Let $\gamma:[a,b]\longrightarrow D$ be a path of class C^1 . The path

$$\tilde{\gamma}: [a,b] \longrightarrow D, \qquad \tilde{\gamma}(t) = \gamma(a+b-t)$$

is the *inverse paths* corresponding to γ .

10.4.18 Proposition. If

$$f:D\longrightarrow\mathbb{C}$$

is a continuous function and

$$\gamma: [a,b] \longrightarrow D$$

a path of class C^1 in D then

$$\int_{\tilde{\gamma}} f(z) dz = -\int_{\gamma} f(z) dz.$$

Proof. By using the change of variable s = a + b - t we get

$$\int_{\tilde{\gamma}} f(z) dz = \int_a^b f(\tilde{\gamma}(t)) \, \tilde{\gamma}'(t) dt = -\int_a^b f(\gamma(a+b-t)) \, \gamma'(a+b-t) dt$$
$$= \int_b^a f(\gamma(s)) \, \gamma'(s) ds = -\int_{\gamma} f(z) dz.$$

10.4.19 Definition. Let $D \subseteq \mathbb{C}$. A path piecewise of class C^1 in D is a continuous mapping

$$\gamma: [a,b] \longrightarrow D$$

such that there exists a subdivision $a = t_0 < t_1 < \ldots < t_n = b$ with:

- 1) the restrictions $\gamma|_{(t_{i-1},t_i)}$ are differentiable and with continuous derivative
- 2) there exist and are finite the limits

$$\lim_{t \searrow a} \gamma'(t), \qquad \lim_{t \searrow t_j} \gamma'(t), \qquad \lim_{t \nearrow t_j} \gamma'(t), \qquad \lim_{t \searrow b} \gamma'(t)$$
 for any $j \in \{1, 2, \dots, n-1\}$.

10.4.20 The considered path is composed by the paths of class \mathbb{C}^1

$$\gamma_1: [t_0, t_1] \longrightarrow D, \qquad \gamma_1 = \gamma|_{[t_0, t_1]}$$

$$\gamma_2: [t_1, t_2] \longrightarrow D, \qquad \gamma_2 = \gamma|_{[t_1, t_2]}$$

.....

$$\gamma_n : [t_{n-1}, t_n] \longrightarrow D, \qquad \gamma_n = \gamma|_{[t_{n-1}, t_n]}$$

and for any continuous function

$$f:D\longrightarrow\mathbb{C}$$

we define the complex line integral of the function f along the path γ as

$$\int_{\gamma} f(z)dz = \sum_{j=1}^{n} \int_{\gamma_{j}} f(z)dz = \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} f(\gamma(t)) \gamma'(t) dt.$$

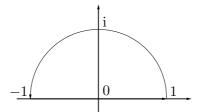


Figure 10.19: Path piecewise of class C^1 .

We consider only paths piecewise of class C^1 , and call them simply paths.

10.4.21 Example. The mapping (Figure 10.19)

$$\gamma:[0,2]\longrightarrow\mathbb{C},\qquad \gamma(t)=\left\{\begin{array}{ll} \mathrm{e}^{\pi\mathrm{i}t} & \mathrm{dac}\check{\mathrm{a}} & t\in[0,1]\\ \\ 2t-3 & \mathrm{dac}\check{\mathrm{a}} & t\in(1,2] \end{array}\right.$$

is a path in \mathbb{C} , and for any continuous function

$$f:\mathbb{C}\longrightarrow\mathbb{C}$$

we have

$$\int_{\gamma} f(z) dz = \int_{0}^{1} f(e^{\pi i t}) \pi i e^{\pi i t} dt + \int_{1}^{2} f(2t - 3) 2dt.$$

10.4.22 Antiderivatives of some real functions of a real variable $f: I \to \mathbb{R}$

(I is an interval contained in the domain of derivability of the antiderivatives)

Function	Set of all the antiderivatives	Interval	Conditions
f(x) = 1	$\int dx = x + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	
$f(x) = x^n$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	$n \in \mathbb{N}$
$f(x) = x^{\alpha}$	$\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + \mathcal{C}$	$I\subseteq(0,\infty)$	$\alpha \in \mathbb{R} - \{-1\}$
$f(x) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + \mathcal{C}$	$I \subseteq \mathbb{R} - \{0\}$	
$f(x) = e^x$	$\int e^x dx = e^x + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	
$f(x) = a^x$	$\int a^x dx = \frac{1}{\ln a} a^x + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	$0 < a \neq 1$
$f(x) = \sin x$	$\int \sin x dx = -\cos x + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	
$f(x) = \cos x$	$\int \cos x dx = \sin x + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	
$f(x) = \frac{1}{\cos^2 x}$	$\int \frac{1}{\cos^2 x} dx = \tan x + \mathcal{C}$	$I \subseteq \mathbb{R} - \left(\frac{\pi}{2} + \mathbb{Z}\pi\right)$	
$f(x) = \frac{1}{\sin^2 x}$	$\int \frac{1}{\sin^2 x} dx = -\cot x + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}\!-\!\mathbb{Z}\pi$	
$f(x) = \frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + \mathcal{C}$	$I\subseteq(-a,a)$	$a \neq 0$
$f(x) = \frac{1}{\sqrt{x^2 - a^2}}$	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left x + \sqrt{x^2 - a^2} \right + C$	$I \subseteq \mathbb{R} - [-a, a]$	a > 0
$f(x) = \frac{1}{\sqrt{x^2 + a^2}}$	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$	$I\!\subseteq\!\mathbb{R}$	$a \neq 0$
$f(x) = \frac{1}{a^2 + x^2}$	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	$a \neq 0$
$f(x) = \frac{1}{x^2 - a^2}$	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}\!-\!\{\pm a\}$	$a \neq 0$
$f(x) = \operatorname{sh} x$	$\int \operatorname{sh} x dx = \operatorname{ch} x + \mathcal{C}$	$I \subseteq \mathbb{R}$	
$f(x) = \operatorname{ch} x$	$\int \operatorname{ch} x dx = \operatorname{sh} x + \mathcal{C}$	$I\!\subseteq\!\mathbb{R}$	

10.4.23 **Definition.** We say that the function defined on an open set D

$$f:D\longrightarrow \mathbb{C}$$

admits antiderivatives in D if there exists a holomorphic function

$$g:D\longrightarrow \mathbb{C}$$

such that

$$g'(z) = f(z),$$
 for any $z \in D$.

10.4.24 Examples.

a) If $k \in \{0, 1, 2, \ldots\}$ then the function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = z^k = \underbrace{z \cdot z \cdots z}_{k \text{ ori}}$$

admits in
$$\mathbb C$$
 the antiderivative
$$g:\mathbb C\longrightarrow\mathbb C,\qquad g(z)=\frac{z^{k+1}}{k+1}$$

because

$$\left(\frac{z^{k+1}}{k+1}\right)' = z^k$$
, for any $z \in \mathbb{C}$.

b) If $k \in \{2, 3, 4, \ldots\}$ then the function

$$f: \mathbb{C}^* \longrightarrow \mathbb{C}, \qquad f(z) = z^{-k} = \frac{1}{z^k}$$

admits in $\mathbb{C}^* = \mathbb{C} - \{0\}$ the antiderivative

$$g: \mathbb{C}^* \longrightarrow \mathbb{C}, \qquad g(z) = \frac{z^{1-k}}{1-k} = -\frac{1}{(k-1)z^{k-1}}$$

because

$$\left(\frac{z^{1-k}}{1-k}\right)' = z^{-k},$$
 for any $z \in \mathbb{C}^*$.

c) The exponential function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = e^z$$

admits in $\mathbb C$ the antiderivative

$$g: \mathbb{C} \longrightarrow \mathbb{C}, \qquad g(z) = e^z$$

because

$$(e^z)' = e^z$$
, for any $z \in \mathbb{C}$.

d) The function

$$\cos: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = \cos z$$

admits in $\mathbb C$ the antiderivative

$$g: \mathbb{C} \longrightarrow \mathbb{C}, \qquad g(z) = \sin z$$

because

$$(\sin z)' = \cos z$$
, for any $z \in \mathbb{C}$.

e) The function

$$\sin: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = \sin z$$

admits in \mathbb{C} the antiderivative

$$g: \mathbb{C} \longrightarrow \mathbb{C}, \qquad g(z) = -\cos z$$

because

$$(-\cos z)' = \sin z$$
, for any $z \in \mathbb{C}$.

10.4.25 Proposition. If the continuous function

$$f:D\longrightarrow \mathbb{C}$$

admits in D the antiderivative

$$q:D\longrightarrow\mathbb{C}$$

and if

$$\gamma: [a,b] \longrightarrow D$$

is a path contained in D then

$$\int_{\gamma} f(z)dz = g(z)|_{\gamma(a)}^{\gamma(b)} = g(\gamma(b)) - g(\gamma(a)).$$

Proof. By using the change of variable formula we get

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt = \int_{a}^{b} g'(\gamma(t)) \gamma'(t) dt$$

$$=\int_a^b \frac{d}{dt} g(\gamma(t)) dt = g(\gamma(t))|_{t=a}^{t=b} = g(z)|_{z=\gamma(a)}^{z=\gamma(b)}$$

10.4.26 If a continuous function

$$f:D\longrightarrow \mathbb{C}$$

admits an antiderivative in D, then the integral along a path

$$\gamma: [a,b] \longrightarrow D$$

contained in D depends only on the endpoints $\gamma(a)$ and $\gamma(b)$ of the path. If

$$\gamma: [a,b] \longrightarrow D$$
 and $\gamma_1: [a,b] \longrightarrow D$

are two paths in D such that $\gamma(a)=\gamma_1(a)$ and $\gamma(b)=\gamma_1(b)$ then

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz.$$

10.4.27 Exercise. Compute the integrals

$$\int_{\gamma} z^3 dz, \qquad \int_{\gamma} \frac{1}{z^2} dz, \qquad \int_{\gamma} e^z dz, \qquad \int_{\gamma} (2z^3 + \frac{5}{z^2} - e^z) dz$$

where γ is a path in \mathbb{C}^* with the starting point 1 and end point i (Figure 10.20).

Solution. Let $\gamma: [a,b] \longrightarrow \mathbb{C}^*$ be a path with the starting point $z_1 = 1$ and end point $z_2 = i$, that is, such that $\gamma(a) = 1$ and $\gamma(b) = i$. We have

point
$$z_2 = i$$
, that is, such that $\gamma(a) = 1$ and $\gamma(b) = i$. We have
$$\int_{\gamma} z^3 dz = \left. \frac{z^4}{4} \right|_{z=\gamma(a)}^{z=\gamma(b)} = \left. \frac{z^4}{4} \right|_{z=1}^{z=i} = \frac{i^4}{4} - \frac{1^4}{4} = 0,$$

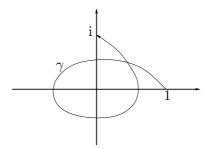


Figure 10.20: A paths γ with the starting point 1 and end point i.

$$\begin{split} \int_{\gamma} \frac{1}{z^2} \, dz &= -\frac{1}{z} \Big|_{z=\gamma(a)}^{z=\gamma(b)} = -\frac{1}{z} \Big|_{z=1}^{z=\mathrm{i}} = -\frac{1}{\mathrm{i}} + 1 = 1 + \mathrm{i}, \\ \int_{\gamma} \mathrm{e}^z \, dz &= \mathrm{e}^z \Big|_{z=\gamma(a)}^{z=\gamma(b)} = \mathrm{e}^z \Big|_{z=1}^{z=\mathrm{i}} = \mathrm{e}^{\mathrm{i}} - \mathrm{e} = \cos 1 + \mathrm{i} \sin 1 - \mathrm{e}, \\ \int_{\gamma} (2z^3 + \frac{5}{z^2} - \mathrm{e}^z) \, dz &= 2 \int_{\gamma} z^3 \, dz + 5 \int_{\gamma} \frac{1}{z^2} \, dz - \int_{\gamma} \mathrm{e}^z \, dz \\ &= 5 + \mathrm{e} - \cos 1 + (5 - \sin 1) \mathrm{i}. \end{split}$$

10.4.28 Definition. A path $\gamma : [a, b] \longrightarrow D$ is called a *closed path* if

$$\gamma(a) = \gamma(b)$$

that is, if the starting point $\gamma(a)$ and the end point $\gamma(b)$ coincide.

10.4.29 Proposition. If the continuous function

$$f:D\longrightarrow \mathbb{C}$$

 $admits\ in\ D\ an\ antiderivative$

$$q:D\longrightarrow\mathbb{C}$$

and if

$$\gamma: [a,b] \longrightarrow D$$

is a closed path contained in D then

$$\int_{\gamma} f(z)dz = 0.$$

Proof. Since $\gamma(a) = \gamma(b)$ we have

$$\int_{\gamma} f(z)dz = g(z)|_{\gamma(a)}^{\gamma(b)} = g(\gamma(b)) - g(\gamma(a)) = 0.$$

10.4.30 Exercise. Consider the circular path

$$\gamma: [0, 2\pi] \longrightarrow \mathbb{C}, \qquad \gamma(t) = e^{it} = \cos t + i \sin t.$$

a) Prove that we have

$$\int_{\gamma}z^k\,dz=0$$
 for any $k\in\mathbb{Z}-\{-1\}=\{\ldots,-3,-2,0,1,2,3,\ldots\},$ but
$$\int_{\gamma}z^{-1}\,dz=\int_{\gamma}\frac{1}{z}\,dz=2\pi\mathrm{i}.$$

b) Prove that

$$\int_{\gamma} \left(\frac{a_{-2}}{z^2} + \frac{a_{-1}}{z} + a_0 + a_1 z + a_2 z^2 \right) dz = 2\pi i a_{-1}$$

for any $a_{-2}, a_{-1}, a_0, a_1, a_2 \in \mathbb{C}$.

Solution. a) The path γ is contained in the open set $\mathbb{C}^* = \mathbb{C} - \{0\}$ and the function

$$f: \mathbb{C}^* \longrightarrow \mathbb{C}, \qquad f(z) = z^k$$

admits in \mathbb{C}^* the antiderivative

$$g: \mathbb{C}^* \longrightarrow \mathbb{C}, \qquad g(z) = \frac{z^{k+1}}{k+1}$$

for any $k \in \mathbb{Z} - \{-1\}$.

b) By using the definition of the complex line integral we get

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{\gamma(t)} \gamma'(t) dt = \int_{0}^{2\pi} \frac{1}{e^{it}} i e^{it} dt = i \int_{0}^{2\pi} dt = 2\pi i.$$

10.4.31 From the previous exercice it follows that the holomorphic function

$$f: \mathbb{C}^* \longrightarrow \mathbb{C}, \qquad f(z) = \frac{1}{z}$$

does not admit any antiderivative in \mathbb{C}^* .

10.4.32 Exercise. Consider the circular path

$$\gamma: [0, 2\pi] \longrightarrow \mathbb{C}, \qquad \gamma(t) = z_0 + r e^{it}$$

a) Prove that

$$\int_{\gamma} (z - z_0)^k dz = 0 \quad \text{for any} \quad k \in \mathbb{Z} - \{-1\}$$

but

$$\int_{\gamma} (z - z_0)^{-1} dz = \int_{\gamma} \frac{1}{z - z_0} dz = 2\pi i.$$

b) Prove that

$$\int_{\gamma} \left(\frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 \right) dz = 2\pi i a_{-1}$$
for any a_{-2} , a_{-1} , a_0 , a_1 , $a_2 \in \mathbb{C}$.

Solution. a) The path γ is contained in the open set $\mathbb{C} - \{z_0\}$ and the function

$$f: \mathbb{C} - \{z_0\} \longrightarrow \mathbb{C}, \qquad f(z) = (z - z_0)^k$$

admits in \mathbb{C}^* the antiderivative

$$g: \mathbb{C} - \{z_0\} \longrightarrow \mathbb{C}, \qquad g(z) = \frac{(z - z_0)^{k+1}}{k+1}$$

for any $k \in \mathbb{Z} - \{-1\}$.

b) By using the definition of the complex line integral we get

$$\int_{\gamma} \frac{1}{z - z_0} dz = \int_0^{2\pi} \frac{1}{\gamma(t) - z_0} \gamma'(t) dt = \int_0^{2\pi} \frac{1}{r e^{it}} i r e^{it} dt = i \int_0^{2\pi} dt = 2\pi i.$$

10.4.33 From the previous exercice it follows that the holomorphic function

$$f: \mathbb{C} - \{z_0\} \longrightarrow \mathbb{C}, \qquad f(z) = (z - z_0)^{-1} = \frac{1}{z - z_0}$$

does not admit any antiderivative in $\mathbb{C} - \{z_0\}$.

10.4.34 Definition. A *connected set* is a set which cannot be partitioned into two nonempty subsets such that each subset has no points in common with the set closure of the other.

A set D is called a *path-connected set* if for any two points z_1 , z_2 from D there exists a path contained in D connecting z_1 and z_2 .

10.4.35 Any path-connected set is a connected set.

An open connected set is called a domain.

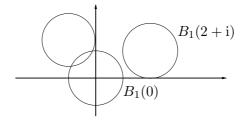


Figure 10.21: The disks $B_1(0)$, $B_1(2+i)$ and $B_1(-1+i\sqrt{2})$.

- **10.4.36 Example.** The set $B_1(0) \cup B_1(-1+i\sqrt{2})$ is a domain, but $B_1(0) \cup B_1(2+i)$ is not a doain (Figure 10.21).
- **10.4.37** We know that any path $\gamma:[a,b]\longrightarrow D$ is equivalent with a path

$$[0,1] \longrightarrow D: t \mapsto \gamma((1-t)a+tb).$$

Without loss of generality, we can use only paths defined on the interval [0,1].

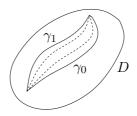


Figure 10.22: Paths homotopic in the domain D.

10.4.38 **Definition.** We say that the paths γ_0 and γ_1 from D having the same end points are *homotopic in* D if one can be continuously deformed into the other inside D, that is, if there exists a continuous mapping

$$h:[0,1]\times[0,1]\longrightarrow D:(s,t)\mapsto h(s,t)$$

satisfying the following conditions

- a) $h(0,t) = \gamma_0(t)$, for any oricare ar fi $t \in [0,1]$,
- b) $h(1,t) = \gamma_1(t)$, for any $t \in [0,1]$,
- c) $h(s,0) = \gamma_0(0) = \gamma_1(0)$, for any $s \in [0,1]$,
- d) $h(s,1) = \gamma_0(1) = \gamma_1(1)$, for any $s \in [0,1]$.
- **10.4.39 Example.** The paths $\gamma_0, \ \gamma_1 : [0,1] \longrightarrow \mathbb{C}$,

$$\gamma_0(t) = e^{2\pi i t}, \qquad \gamma_1(t) = \frac{1}{2} + \frac{1}{2}e^{2\pi i t}$$

are homotopic in $D=\mathbb{C}-\bar{B}_{\frac{1}{4}}(\frac{1}{2}).$ In this case we can choose (Figure 10.23)

$$h(s,t) = (1-s)\gamma_0(t) + s\gamma_1(t).$$

Generally, we shall 'decide' whether two paths are homotopic directly by using the corresponding figure.

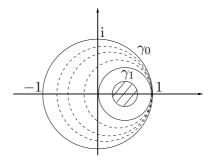


Figure 10.23: Homotopic paths.

10.4.40 Example. The circular path

$$\gamma_0: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma_0(t) = 3e^{2\pi it} = 3\cos 2\pi t + 3i\sin 2\pi t$$

is homotopic in \mathbb{C}^* with the elliptic path

$$\gamma_1: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma_1(t) = 3\cos 2\pi t + i\sin 2\pi t$$

but the two paths are not homotopic in $D = \mathbb{C} - \{2i\}$ (Figure 10.24).

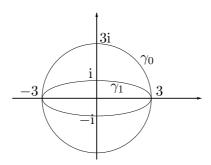


Figure 10.24: Circular path homotopic to an ellyptic one.

10.4.41 Example. The paths $\gamma_0, \ \gamma_1 : [0,1] \longrightarrow \mathbb{C}$,

$$\gamma_0(t) = 1 - 2t, \qquad \gamma_1(t) = e^{\pi i t}$$

are homotopic in \mathbb{C} , but they are not homotopic in $\mathbb{C}-\{\frac{1}{2}\mathrm{i}\}$ (Figure 10.25).

10.4.42 Definition. We say that the closed path

$$\gamma: [a,b] \longrightarrow \mathbb{C}$$

is homotopic to zero in D if it is homotopic in D with a constant path

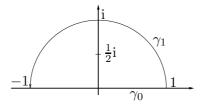


Figure 10.25: The paths $\gamma_0(t) = 1 - 2t$ and $\gamma_1(t) = e^{\pi i t}$.

$$[a,b] \longrightarrow D: t \mapsto \gamma(a).$$

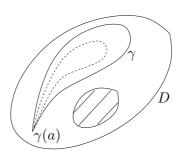


Figure 10.26: Path homotopic to zero in D.

10.4.43 Example. The circular path

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = e^{2\pi i t}$$

is homotopic to zero in $D=\mathbb{C}-\{2\mathrm{i}\},$ but it is not homotopic to zero in $\mathbb{C}^*.$

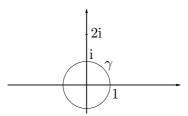


Figure 10.27: The path $\gamma:[0,1]\longrightarrow \mathbb{C},\, \gamma(t)=\mathrm{e}^{2\pi\mathrm{i}t}.$

10.4.44 Theorem (Cauchy) If $D \subseteq \mathbb{C}$ is an open set,

$$f:D\longrightarrow \mathbb{C}$$

is a holomorphic function and

$$\gamma: [a,b] \longrightarrow D$$

is a closed path homotopic to zero in D then

$$\int_{\gamma} f(z) \, dz = 0.$$

A proof can be found in [?].

10.4.45 Proposition. *If* $D \subseteq \mathbb{C}$ *is an open set,*

$$f:D\longrightarrow \mathbb{C}$$

is a holomorphic function and

$$\gamma_0: [a,b] \longrightarrow D, \qquad \gamma_1: [a,b] \longrightarrow D$$

are two paths homotopic in D then

$$\int_{\gamma_0} f(z) \, dz = \int_{\gamma_1} f(z) \, dz. \tag{10.1}$$

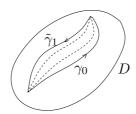


Figure 10.28: The paths γ_0 and $\tilde{\gamma}_1$ form a closed path.

Proof. The path obtained by composing γ_0 with the inverse $\tilde{\gamma}_1$ of γ_1 is a closed path homotopic to zero in D. By using Cauchy' theorem we get the relation

$$\int_{\gamma_0} f(z) dz + \int_{\tilde{\gamma}_1} f(z) dz = 0.$$

echivalentă cu (10.1).

10.4.46 Let k be a positive integer. The path

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = z_0 + e^{2k\pi i t}$$

winds k times around z_0 in the direct sense (counterclockwise) and

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = k.$$

The path

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = z_0 + e^{-2k\pi i t}$$

winds k times around z_0 in the inverse sense (clockwise) and

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = -k.$$

The path γ from Figure 10.29 is homotopic in $\mathbb{C}-\{z_0\}$ to the path

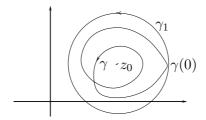


Figure 10.29: Drumul γ are indexul 2 față de z_0 .

$$\gamma_1: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma_1(t) = z_0 + r e^{4\pi i t}$$

and hence

$$\frac{1}{2\pi \mathrm{i}} \int_{\gamma} \frac{1}{z - z_0} \, dz = \frac{1}{2\pi \mathrm{i}} \int_{\gamma_1} \frac{1}{z - z_0} \, dz = 2.$$

Generally, if γ is a closed path not passing through z_0 the number

$$n(z_0, \gamma) = \frac{1}{2\pi \mathrm{i}} \int_{\gamma} \frac{1}{z - z_0} \, dz$$

called the *index* of z_0 with respect to γ , shows how many counterclockwise turns around z_0 the path γ makes. A proof can be found in [?].

10.4.47 A closed path γ determines a partition of the set of all the points not lying on γ into connected sets. All the points belonging to the same component of the partition have the same index with respect to γ (Figure 10.30).

10.4.48 Theorem (Cauchy's formula). Any holomorphic function

$$f:D\longrightarrow\mathbb{C}$$

defined on an open set D is indefinitely differentiable, and for any path

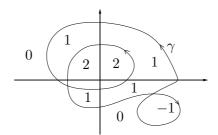


Figure 10.30: The index with respect to γ of the points not lying on γ .

$$\gamma:[0,1]\longrightarrow D$$

 $homotopic\ to\ zero\ in\ D\ we\ have$

$$n(z,\gamma) f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+1}} d\zeta$$

for any $k \in \mathbb{N}$ and any $z \in D - \{ \gamma(t) \mid t \in [0,1] \}$. A proof can be found in [?].

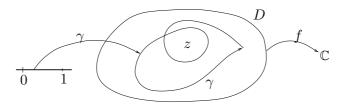


Figure 10.31: $f^{(k)}(z)$ satisfies Cauchy's formula.

10.5 Laurent series

10.5.1 **Definition.** Let $D \subseteq \mathbb{C}$ be a subset and

$$f_n: D \longrightarrow \mathbb{C}, \qquad n \in \mathbb{N}$$

be functions defined on D. The series of complex functions

$$\sum_{n=0}^{\infty} f_n$$

is said to be convergent (respectively, uniformly convergent) if the sequence of partial sums $(s_k)_{k\geq 0}$, where

$$s_k = \sum_{n=0}^k f_n$$

is convergent (respectively, uniformly convergent). The limit of this sequence

$$\sum_{n=0}^{\infty} f_n = \lim_{k \to \infty} s_k = \lim_{k \to \infty} \sum_{n=0}^{k} f_n = \lim_{k \to \infty} (f_0 + f_1 + \dots + f_k)$$

is the *series sum*. The considered series is said to be *absolutely convergent* if the series of real functions

$$\sum_{n=0}^{\infty} |f_n|$$

is convergent.

10.5.2 Proposition. If |z| < 1 then the geometric series

$$\sum_{n=0}^{\infty} z^n$$

is convergent and its sum is $\frac{1}{1-z}$, that is,

$$|z| < 1$$
 \Longrightarrow $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$

Proof. If |z| < 1 then

$$\lim_{k \to \infty} \sum_{n=0}^{k} z^n = \lim_{k \to \infty} (1 + z + z^2 + \dots + z^k) = \lim_{k \to \infty} \frac{1 - z^{k+1}}{1 - z} = \frac{1}{1 - z}.$$

10.5.3 Theorem (Weierstrass). Let $D \subseteq \mathbb{C}$ be a subset and

$$f_n: D \longrightarrow \mathbb{C}, \qquad n \in \mathbb{N}$$

be functions defined on D. If there exists a convergent series of real numbers

$$\sum_{n=0}^{\infty} \alpha_n$$

such that

$$|f_n(z)| \le \alpha_n$$
, for any $z \in D$, $n \in \mathbb{N}$

then the series of complex functions

$$\sum_{n=0}^{\infty} f_n$$

is absolutely and uniformly convergent.

10.5.4 Definition. A power series about z_0 (or centered at z_0) is a series of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

where the coefficients a_0, a_1, a_2, \dots are complex numbers. It can also be written in the form

$$a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$$

10.5.5 Any power series is a series of functions

$$\sum_{n=0}^{\infty} f_n$$

with the functions f_n having the particular form

$$f_n: D \longrightarrow \mathbb{C}, \qquad f_n(z) = a_n (z - z_0)^n.$$

10.5.6 Definition. Let $D \subseteq \mathbb{C}$ be an open set and

$$f: D \longrightarrow \mathbb{C}, \qquad f_n: D \longrightarrow \mathbb{C}, \qquad n \in \mathbb{N}$$

be functions defined on D. We say that the sequence of functions $(f_n)_{n>0}$ converges uniformly on compact sets to f if the sequence of the restrictions $f_n|_K$ converges uniformly to $f|_K$, for any compact subset $K \subset D$.

10.5.7 Theorem (Weierstrass). Let $D \subseteq \mathbb{C}$ be an open set and

$$f: D \longrightarrow \mathbb{C}, \qquad f_n: D \longrightarrow \mathbb{C}, \qquad n \in \mathbb{N}$$

be functions defined on D. If the functions f_n are holomorphic and $(f_n)_{n\geq 0}$ converges uniformly on compact sets to f then f is a holomorphic function and

$$\lim_{n \to \infty} f_n^{(k)} = f^{(k)}, \quad \text{for any} \quad k \in \mathbb{N}.$$

A proof can be found in [?].

10.5.8 Theorem (Weierstrass). If D is an open set and the series

$$\sum_{n=0}^{\infty} f_n$$

of holomorphic functions converges uniformly on compact sets in D then its sum

$$S: D \longrightarrow \mathbb{C}, \qquad S(z) = \sum_{n=0}^{\infty} f_n(z)$$

is a holomorphic function and

$$S^{(k)} = \sum_{n=0}^{\infty} f_n^{(k)}, \quad for \ any \quad k \in \mathbb{N}.$$

Proof. The statement follows from the previous theorem.

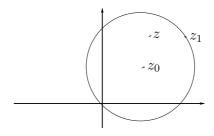


Figure 10.32: The disk of center z_0 and radius $|z_1 - z_0|$.

10.5.9 Theorem (Abel). If the power series

$$\sum_{n=0}^{\infty} a_n \left(z - z_0 \right)^n$$

is convergent for $z = z_1 \neq z_0$ then it is convergent in the disk

$$\{ z \mid |z - z_0| < |z_1 - z_0| \}$$

of center z_0 and radius $|z_1 - z_0|$.

Proof. The series $\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$ being convergent, we have

$$\lim_{n\to\infty} a_n (z_1 - z_0)^n = 0$$

and therefore there exists $n_0 \in \mathbb{N}$ such that

$$|a_n (z_1 - z_0)^n| < 1,$$
 for any $n \ge n_0$

that is,

$$|a_n| < \frac{1}{|z_1 - z_0|^n},$$
 for any $n \ge n_0$.

From the relation

$$|a_n (z - z_0)^n| < \left(\frac{|z - z_0|}{|z_1 - z_0|}\right)^n$$
, for any $n \ge n_0$

and from the convergence of the geometric series

$$\sum_{n=0}^{\infty} \left(\frac{|z - z_0|}{|z_1 - z_0|} \right)^n$$

for $|z-z_0| < |z_1-z_0|$ it follows the convergence of the seris $\sum_{n=0}^{\infty} |a_n (z-z_0)^n|$. The normed space $(\mathbb{C}, |\cdot|)$ being complete, any absolutely convergent series is convergent.

10.5.10 Consider the power series

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

If z is such that there exists

$$\lim_{n \to \infty} \sqrt[n]{|a_n(z - z_0)^n|} < 1$$

that is, such that

$$|z - z_0| < \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$

then, in view of the root test, the considered series is convergent.

10.5.11 Theorem (Cauchy-Hadamard). In the case of a power series

$$\sum_{n=0}^{\infty} a_n \left(z - z_0 \right)^n$$

there exists

$$R = \begin{cases} 0 & \text{if } \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty \\ \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}} & \text{if } \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \notin \{0, \infty\} \\ \infty & \text{if } \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 0 \end{cases}$$

(called the radius of convergence) such that:

a) In the disk (called the convergence disk)

$$B_R(z_0) = \{ z \mid |z - z_0| < R \}$$

the series converges absolutely and uniformly on compact sets.

- b) In $\mathbb{C}-\bar{B}_R(z_0)=\{z\mid |z-z_0|>R\}$ the series is divergent.
- c) The sum series

$$S: B_R(z_0) \longrightarrow \mathbb{C}, \qquad S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

is a holomorphic function.

d) The derivative series is a power series with the same radius of convergence and

$$S'(z) = \sum_{n=1}^{\infty} na_n(z - z_0)^{n-1}, \quad \text{for any} \quad k \in B_R(z_0).$$

A proof can be found in [?].

10.5.12 If there exists the limit

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

then

$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}.$$

10.5.13 Examples.

a) The radius of convergence of the geometric series

$$\sum_{n=0}^{\infty} z^n$$

is R = 1 because in this case $a_n = 1$, for any $n \in \mathbb{N}$.

b) The radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$

is
$$R = \lim_{n \to \infty} \frac{1/n!}{1/(n+1)!} = \lim_{n \to \infty} (n+1) = \infty.$$

10.5.14 By assuming that f is the sum of a power series centered at z_0

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

with a non-null radius of convergence, from Cauchy-Hadamard theorem we get

$$f^{(k)}(z) = \sum_{n=0}^{\infty} [a_n (z - z_0)^n]^{(k)}, \quad \text{for any } k \in \mathbb{N}.$$

This relation leads to

$$a_k = \frac{f^{(k)}(z_0)}{k!}.$$

10.5.15 Theorem (Taylor series expansion). If the function

$$f: B_r(z_0) \longrightarrow \mathbb{C}$$

is holomorphic and R is the radius of convergence of the associated Taylor series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

then $R \geq r$ and

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

= $f(z_0) + \frac{f'(z_0)}{1!} (z - z_0) + \frac{f''(z_0)}{2!} (z - z_0)^2 + \cdots$

for any $z \in B_r(z_0)$.

A proof can be found in [?].

10.5.16 Examples. By using the previous theorem we get

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots \quad \text{for} \quad |z| < 1$$

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots \quad \text{for any} \quad z \in \mathbb{C}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots \quad \text{for any} \quad z \in \mathbb{C}.$$

By differentiation or an adequate substitution we get other Taylor series expansions

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n = 1 - z + z^2 - \dots \quad \text{for} \quad |z| < 1$$

$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} nz^{n-1} = 1 + 2z + 3z^2 + \dots \quad \text{for} \quad |z| < 1$$

$$\frac{1}{(1+z)^2} = \sum_{n=0}^{\infty} n(-1)^{n-1} z^{n-1} = 1 - 2z + 3z^2 - \dots \quad \text{for} \quad |z| < 1$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots \quad \text{for any} \quad z \in \mathbb{C}.$$

10.5.17 MATHEMATICA: Series[f[z], $\{z, z_0, n\}$]

$$\begin{split} & \text{In}[1] := \text{Series}[1/(1-z), \ \{z, \ 0, \ 5\}] \quad \mapsto \quad \text{Out}[1] = 1 + z + z^2 + z^3 + z^4 + z^5 + O[z]^6 \\ & \text{In}[2] := \text{Series}[\text{Exp}[z], \ \{z, \ 0, \ 6\}] \quad \mapsto \quad \text{Out}[2] = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{720} + O[z]^7 \\ & \text{In}[3] := \text{Series}[\text{Exp}[z], \ \{z, \ 1, \ 3\}] \quad \mapsto \quad \text{Out}[3] = e + e(z-1) + \frac{1}{2}e(z-1)^2 + \frac{1}{6}e(z-1)^3 + O[z-1]^4 \\ & \text{In}[4] := \text{Series}[\text{Exp}[z], \ \{z, \ 1, \ 3\}] \quad \mapsto \quad \text{Out}[4] = e^{\mathbf{i}} + e^{\mathbf{i}}(z-\mathbf{i}) + \frac{1}{2}e^{\mathbf{i}}(z-\mathbf{i})^2 + \frac{1}{6}e^{\mathbf{i}}(z-\mathbf{i})^3 + O[z-\mathbf{i}]^4 \\ & \text{In}[5] := \text{Series}[\text{Cos}[z], \ \{z, \ 0, \ 6\}] \quad \mapsto \quad \text{Out}[5] = 1 - \frac{z^2}{2} + \frac{z^4}{24} - \frac{z^6}{720} + O[z]^7 \end{split}$$

10.5.18 **Definition.** A Laurent series centered at z_0 is a series of the form

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

where a_n are complex numbers. It can also be written in the form

$$\cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

10.5.19 Theorem (Annulus of convergence). Consider a Laurent series

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

and define

$$r = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_{-n}|}$$

$$R = \begin{cases} 0 & \text{if } \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty \\ \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}} & \text{if } \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \notin \{0, \infty\} \\ \infty & \text{if } \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 0. \end{cases}$$

If r < R then:

a) In the circular annulus (called the annulus of convergence)

$$D = \{ z \mid r < |z - z_0| < R \}$$

Laurent series converges absolutely and uniformly on compact sets.

- b) Laurent series diverges in $\{z \mid |z-z_0| < r\} \cup \{z \mid |z-z_0| > R\}$.
- c) The sum of the Laurent series $S:D\longrightarrow \mathbb{C}$,

$$S(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n = \sum_{n=1}^{\infty} a_{-n} (z - z_0)^{-n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

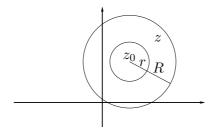


Figure 10.33: The circular annulus { $z \mid r < \mid z - z_0 \mid < R$ }.

is a holomorphic function.

A proof can be found in [?].

10.5.20 Theorem (Laurent series expansion). If the function defined on the annulus

$$f: D = \{ z \mid r < |z - z_0| < R \} \longrightarrow \mathbb{C}$$

is holomorphic then there exists a unique Laurent series

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

with the annulus of convergence including D and such that

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$
 for any $z \in D$.

10.5.21 Examples.

a) The holomorphic function

$$f: D = \{ z \mid 0 < |z| < 1 \} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{1}{z^2(1-z)}$$

admits in the annulus D the Laurent series expansion centered at 0

$$f(z) = \frac{1}{z^2} \frac{1}{1-z} = \frac{1}{z^2} (1+z+z^2+\cdots) = \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + \cdots$$
 (10.2)

b) The holomorphic function

$$f: D = \{ z \mid 0 < |z - i| < \infty \} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{e^z}{(z - i)^2}$$

admits in the annulus D the Laurent series expansion centered at i

$$f(z) = \frac{e^{z}}{(z-i)^{2}} = \frac{e^{i}}{(z-i)^{2}} e^{z-i} = \frac{e^{i}}{(z-i)^{2}} \left(1 + \frac{z-i}{1!} + \frac{(z-i)^{2}}{2!} + \cdots\right)$$

$$= \frac{e^{i}}{(z-i)^{2}} + \frac{e^{i}}{z-i} + \frac{e^{i}}{2!} + \frac{e^{i}}{3!} (z-i) + \cdots$$
(10.3)

c) The holomorphic function

$$f: D = \{ z \mid 0 < |z| < \infty \} \longrightarrow \mathbb{C}, \qquad f(z) = z^2 e^{\frac{1}{z}}$$

admits in the annulus D the Laurent series expansion centered at 0

$$f(z) = z^{2} e^{\frac{1}{z}} = z^{2} \left(1 + \frac{1}{1!} \frac{1}{z} + \frac{1}{2!} \frac{1}{z^{2}} + \cdots \right)$$

$$= \cdots + \frac{1}{4!} \frac{1}{z^{2}} + \frac{1}{3!} \frac{1}{z} + \frac{1}{2!} + \frac{1}{1!} z + z^{2} + 0 z^{3} + 0 z^{4} + \cdots$$

$$(10.4)$$

10.5.22 Definition. Let $f:D \longrightarrow \mathbb{C}$ be a holomorphic function defined on an open set D. We say that the point $z_0 \in \mathbb{C} - D$ is an *isolated singular point* of the function f if there exists r > 0 such that the annulus $\{z \mid 0 < |z - z_0| < r\}$ is included into D. The coefficient a_{-1} from the Laurent expansion

$$f(z) = \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

of f in this annulus is called the *residue* of f at the isolated singular point z_0 and is denoted by $\mathbf{Rez}_{z_0}f$, that is,

$$\mathbf{Rez}_{z_0} f = a_{-1}.$$

10.5.23 Examples.

a) The only isolated singular point of the function

$$f: D = \{ z \mid 0 < |z| < 1 \} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{1}{z^2(1-z)}$$

is z = 0 and from (10.2) we get $\mathbf{Rez}_0 = 1$.

b) The only isolated singular point of the function

$$f: D = \{ z \mid 0 < |z - i| < \infty \} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{e^z}{(z - i)^2}$$

is z = i and from (10.3) we get $\mathbf{Rez}_i f = e^{i}$.

c) The only isolated singular point of the function

$$f: D = \{ z \mid 0 < |z| < \infty \} \longrightarrow \mathbb{C}, \qquad f(z) = z^2 e^{\frac{1}{z}}$$

is z=0 and from (10.4) we get $\mathbf{Rez}_0 f = \frac{1}{3!} = \frac{1}{6}$.

10.5.24 MATHEMATICA: Series[f[z], {z, a, n}], Residue[f[z], {z, a}]

10.5.25 **Definition.** Let D be an open set and

$$f:D\longrightarrow \mathbb{C}$$

a holomorphic function. A zero of multiplicity n of f is a point $z_0 \in D$ satisfying the following conditions

$$f(z_0) = f'(z_0) = \dots = f^{(n-1)}(z_0) = 0$$
 and $f^{(n)}(z_0) \neq 0$.

An isolated singular point z_0 of f is called a *pole of order* n if it is a zero of multiplicity n for the function $\frac{1}{f}$.

A pole of order 1 is called a *simple pole*.

10.5.26 Theorem. If the isolated singular point z_0 of the holomorphic function $f: D \longrightarrow \mathbb{C}$ is a pole of order n then there is r > 0 such that the annulus

$$\{ z \mid 0 < |z - z_0| < r \}$$

is contained in D and f admits in this annulus a Laurent expansion of the form

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

10.5.27 a) A function f with a first order pole z_0 admits around z_0 the expansion

$$f(z) = \frac{a_{-1}}{(z - z_0)} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$$

By multiplying with $(z - z_0)$ we get the relation

$$(z-z_0) f(z) = a_{-1} + a_0 (z-z_0) + a_1 (z-z_0)^2 + a_2 (z-z_0)^3 + \cdots$$

leading to

$$\mathbf{Rez}_{z_0} f = a_{-1} = \lim_{z \to z_0} (z - z_0) f(z).$$

b) A function f with a second order pole z_0 admits locally around z_0 the expansion

$$f(z) = \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$$

By multiplying with $(z-z_0)^2$ and then differentiating the obtained relation we get

$$[(z-z_0)^2 f(z)]' = a_{-1} + 2a_0 (z-z_0) + 3a_1 (z-z_0)^2 + \cdots$$

whence

$$\mathbf{Rez}_{z_0} f = a_{-1} = \lim_{z \to z_0} [(z - z_0)^2 f(z)]'.$$

c) A function f with a third order pole z_0 admits locally around z_0 the expansion

$$f(z) = \frac{a_{-3}}{(z - z_0)^3} + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - z_0) + \cdots$$

By multiplying with $(z-z_0)^3$ and then differentiating twice we get the relation

$$[(z-z_0)^3 f(z)]'' = 2! a_{-1} + 6a_0 (z-z_0) + 12a_1 (z-z_0)^2 + \cdots$$

leading to

$$\operatorname{Rez}_{z_0} f = a_{-1} = \frac{1}{2!} \lim_{z \to z_0} [(z - z_0)^3 f(z)]''.$$

d) If z_0 is a pole of order n then

$$\mathbf{Rez}_{z_0} f = \frac{1}{(n-1)!} \lim_{z \to z_0} [(z - z_0)^n f(z)]^{(n-1)}.$$

10.5.28 Example. The function

$$f: \mathbb{C} - \{0, 1\} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{1}{z^2(1-z)}$$

has two isolated singular points 0 and 1. The point 0 is a second order pole and

$$\mathbf{Rez}_0 f = \lim_{z \to 0} [z^2 f(z)]' = \lim_{z \to 0} \left[\frac{1}{1 - z} \right]' = \lim_{z \to 0} \frac{1}{(1 - z)^2} = 1.$$
 (10.5)

The point z = 1 is a first order pole and

$$\mathbf{Rez}_1 f = \lim_{z \to 1} (z - 1) f(z) = \lim_{z \to 1} \frac{-1}{z^2} = -1.$$
 (10.6)

10.6 The residue theorem and some applications

10.6.1 If

$$\gamma: [a,b] \longrightarrow \mathbb{C} - \{z_0\}$$

is a closed path not passing through z_0 then

$$\int_{\gamma} \left(\frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 \right) dz$$

$$= a_{-1} \int_{\gamma} \frac{dz}{z-z_0} = 2\pi i a_{-1} n(z_0, \gamma) \tag{10.7}$$

for any $a_{-2},\ a_{-1},\ a_0,\ a_1,\ a_2\in\mathbb{C}$. The point z_0 is an isolated singular point (second order pole) for the function $f:\mathbb{C}-\{z_0\}\longrightarrow\mathbb{C}$,

$$f(z) = \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2$$

and $\operatorname{Rez}_{z_0} f = a_{-1}$. The relation (10.7) can be written as

$$\int_{\gamma} f(z) dz = 2\pi i \ n(z_0, \gamma) \ \mathbf{Rez}_{z_0} f.$$

10.6.2 Theorem (Residue Theorem). If $D \subseteq \mathbb{C}$ is an open set,

$$f:D\longrightarrow\mathbb{C}$$

is a holomorphic function, S is the set of all the singular isolated points of f and if

$$\gamma: [a,b] \longrightarrow D$$

is a path homotopic to zero in $\tilde{D} = D \cup S$ then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{z \in S} n(z, \gamma) \operatorname{Rez}_{z} f.$$

A proof can be found in [?].

10.6.3 Exercise. Compute the integral

$$\int_{\gamma} \frac{4 \, dz}{(z^2+1)(z-3)^2}$$

where

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = 2 e^{2\pi i t}.$$

Solution. Consider the set $D = \mathbb{C} - \{3, i, -i\}$ and the holomorphic function

$$f: D \longrightarrow \mathbb{C}, \qquad f(z) = \frac{4}{(z^2+1)(z-3)^2}.$$

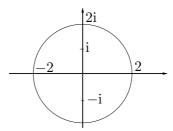


Figure 10.34: The path $\gamma:[0,1]\longrightarrow \mathbb{C},\, \gamma(t)=2\,\mathrm{e}^{2\pi\mathrm{i}t}.$

The set of all the isolated singular points of f is $S = \{3, i, -i\}$ and the path γ is homotopic to zero in $D \cup S = \mathbb{C}$. In view of the residue theorem we have

$$\int_{\gamma} \frac{4\,dz}{(z^2+1)(z-3)^2} = 2\pi\mathrm{i}\left(n(3,\gamma)\,\mathbf{Rez}_3 f + n(\mathrm{i},\gamma)\,\mathbf{Rez}_\mathrm{i} f + n(-\mathrm{i},\gamma)\,\mathbf{Rez}_{-\mathrm{i}} f\right).$$

Since the path γ winds zero times around 3 and once around i and -i we get

$$n(3, \gamma) = 0,$$
 $n(i, \gamma) = n(-i, \gamma) = 1$

whence (Figure 10.34)

$$\int_{\gamma} \frac{4 dz}{(z^2+1)(z-3)^2} = 2\pi i \left(\mathbf{Rez_i} f + \mathbf{Rez_{-i}} f \right).$$

The singular points i and -i being simple poles we have

$$\begin{aligned} \mathbf{Rez_i} f &= \lim_{z \to \mathbf{i}} (z - \mathbf{i}) f(z) = \lim_{z \to \mathbf{i}} \frac{4}{(z - 3)^2 (z + \mathbf{i})} = \frac{4}{2\mathbf{i}(\mathbf{i} - 3)^2} = \frac{3}{25} - \frac{4}{25} \mathbf{i} \\ \mathbf{Rez_{-i}} f &= \lim_{z \to -\mathbf{i}} (z + \mathbf{i}) f(z) = \lim_{z \to -\mathbf{i}} \frac{4}{(z - 3)^2 (z - \mathbf{i})} = \frac{4}{-2\mathbf{i}(\mathbf{i} + 3)^2} = \frac{3}{25} + \frac{4}{25} \mathbf{i} \end{aligned}$$

and

$$\int_{\gamma} \frac{4 \, dz}{(z^2 + 1)(z - 3)^2} = \frac{12}{25} \pi i.$$

10.6.4 MATHEMATICA: Residue[f[z], {z, a}]

$$\begin{split} & \text{In[1]:=Residue[4/((z^2+1)(z-3)^2), \{z, I\}]} & \mapsto & \text{Out[1]=} \frac{3}{25} - \frac{4i}{25} \\ & \text{In[2]:=Residue[4/((z^2+1)(z-3)^2), \{z, -I\}]} & \mapsto & \text{Out[2]=} \frac{3}{25} + \frac{4i}{25} \\ \end{split}$$

10.6.5 Exercițiu. Compute the integral

$$\int_{\gamma} \frac{\mathrm{e}^z}{z^3} \, dz$$

where

$$\gamma: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma(t) = e^{-4\pi i t}$$

Solution. Consider the holomorphic function

$$f: \mathbb{C}^* \longrightarrow \mathbb{C}, \qquad f(z) = \frac{e^z}{z^3}$$

defined on the open set $\mathbb{C}^* = \mathbb{C} - \{0\}$. The singular point z = 0 is a third order pole. In order to compute the residue at 0 of f we can use the Laurent expansion around 0

$$f(z) = \frac{e^z}{z^3} = \frac{1}{z^3} \left(1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots \right)$$
$$= \frac{1}{z^3} + \frac{1}{1!} \frac{1}{z^2} + \frac{1}{2!} \frac{1}{z} + \frac{1}{3!} + \frac{1}{4!} z + \cdots$$

or the relation

$$\mathbf{Rez}_0 f = \frac{1}{2!} \lim_{z \to 0} (z^3 f(z))'' = \frac{1}{2}.$$

By remarking that γ winds twice around 0 clockwise or by using the formula

$$n(0,\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z} = -2$$

we get

$$\int_{\gamma} \frac{\mathrm{e}^z}{z^3} \, dz = 2\pi \mathrm{i} \, n(0, \gamma) \, \mathbf{Rez}_0 f = -2\pi \mathrm{i}.$$

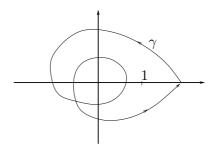


Figure 10.35: The path γ .

10.6.6 Exercise. Compute the integral

$$\int_{\gamma} \frac{1}{z^2 (1-z)} \, dz$$

where γ is the path shown in Figure 10.35 .

Rezolvare. The singular points of the holomorphic function

$$f: \mathbb{C} - \{0, 1\} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{1}{z^2(1-z)}$$

are z = 0 şi z = 1. We know that $\mathbf{Rez}_0 f = 1$ (see (10.5)) and $\mathbf{Rez}_1 f = -1$ (see (10.6)). By remarking that γ winds twice about 0 and once about 1, in view of the

residue theorem we have

$$\int_{\gamma} \frac{1}{z^2(1-z)} dz = 2\pi i \left(2\operatorname{Re} \mathbf{z}_0 f + \operatorname{Re} \mathbf{z}_1 f \right) = 2\pi i.$$

10.6.7 Exercise. Compute the integral

$$I = \int_0^{2\pi} \frac{1}{a + \cos t} dt \quad \text{where} \quad a \in (1, \infty)$$

Solution. The integral can be regarded as a complex line integral and computed by using the residue theorem. We have

$$I = \int_0^{2\pi} \frac{1}{a + \frac{e^{it} + e^{-it}}{2}} dt = \int_0^{2\pi} \frac{1}{ie^{it}} \frac{2}{2a + e^{it} + e^{-it}} (e^{it})' dt$$
$$= -i \int_\gamma \frac{1}{z} \frac{2}{2a + z + \frac{1}{z}} dz = -i \int_\gamma \frac{2}{z^2 + 2az + 1} dz$$

where $\gamma:[0,2\pi]\longrightarrow \mathbb{C},\, \gamma(t)=\mathrm{e}^{\mathrm{i}t}.$ The function

$$f: \mathbb{C} - \{z_1, z_2\} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{2}{z^2 + 2az + 1}$$

where

$$z_1 = -a + \sqrt{a^2 - 1}, \qquad z_2 = -a - \sqrt{a^2 - 1}$$

are the roots of the polynomial $z^2 + 2az + 1$, has two isolated singular points (first order poles) z_1 and z_2 .

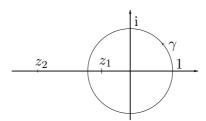


Figure 10.36: The path $\gamma:[0,2\pi]\longrightarrow \mathbb{C},\ \gamma(t)=\mathrm{e}^{\mathrm{i}t}.$

Since z_1 , z_2 are real numbers, $-1 < z_1 < 0$ and $z_2 < -1$ we get $n(z_1, \gamma) = 1$ and $n(z_2, \gamma) = 0$ (Figure 10.36). In view of the residue theorem

$$I = -i \int_{\gamma} \frac{2}{z^2 + 2az + 1} dz = 2\pi \mathbf{Rez}_{z_1} f = 2\pi \lim_{z \to z_1} (z - z_1) f(z)$$
$$= 2\pi \lim_{z \to z_1} (z - z_1) \frac{2}{(z - z_1)(z - z_2)} = \frac{4\pi}{z_1 - z_2} = \frac{2\pi}{\sqrt{a^2 - 1}}.$$

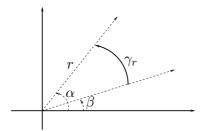


Figure 10.37: The paths γ_r .

10.6.8 Proposition. Consider $\alpha < \beta$ and a continuous function

$$f:D\longrightarrow \mathbb{C}$$

defined on a domaine D containing the images of the paths (Figure 10.37)

$$\gamma_r : [\alpha, \beta] \longrightarrow \mathbb{C}, \qquad \gamma_r(t) = r e^{it}$$

for any r > 0. If

$$\lim_{z \to \infty} z f(z) = 0$$

then

$$\lim_{r \to \infty} \int_{\gamma_r} f(z) \, dz = 0.$$

Proof. For any $\varepsilon > 0$ there exists $r_{\varepsilon} > 0$ such that

$$|z| > r_{\varepsilon} \implies |z f(z)| < \varepsilon.$$

Particularly, for $r > r_{\varepsilon}$ we have

$$\left| \int_{\gamma_r} f(z) \, dz \right| = \left| \int_{\alpha}^{\beta} f(re^{it}) \, ri \, e^{it} \, dt \right| \leq \int_{\alpha}^{\beta} \left| f(re^{it}) \, ri \, e^{it} \right| \, dt < \varepsilon \int_{\alpha}^{\beta} dt = (\beta - \alpha) \varepsilon.$$

10.6.9 From the relations

$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2|,$$

 $|z_2| = |z_2 - z_1 + z_1| \le |z_1 - z_2| + |z_1|$

we get

$$-|z_1-z_2| < |z_1|-|z_2| < |z_1-z_2|$$

that is,

$$||z_1| - |z_2|| \le |z_1 - z_2|.$$

10.6.10 Exercise. Compute the integral

$$I = \int_0^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx$$

Solution. The integral is a real improper integral. The interval of integration is unbounded, but the considered function is bounded. Since

$$\lim_{x \to \infty} \frac{\frac{x^2}{(x^2+1)(x^2+4)}}{\frac{1}{x^2}} = 1$$

the integrals

$$\int_{1}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx \quad \text{and} \quad \int_{1}^{\infty} \frac{1}{x^2} dx$$

are either both convergent or both divergent. We know that the improper integral

$$\int_{1}^{\infty} \frac{1}{x^{\lambda}} dx$$

is convergent for
$$\lambda > 1$$
. Therefore, the considered integral
$$I = \int_0^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx = \int_0^1 \frac{x^2}{(x^2+1)(x^2+4)} dx + \int_1^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx$$
 is convergent.

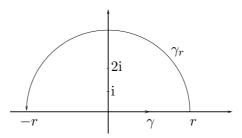


Figure 10.38: The paths γ_r .

In order to compute the value of the integral we consider the holomorphic function

$$f: \mathbb{C} - \{-2i, -i, i, 2i\} \longrightarrow \mathbb{C}, \qquad f(z) = \frac{z^2}{(z^2 + 1)(z^2 + 4)}$$

and the path of integration shown in Figure 10.38 composed by

$$\gamma_r: [0, \pi] \longrightarrow \mathbb{C}, \qquad \gamma_r(t) = r e^{it}$$

and

$$\gamma: [-r, r] \longrightarrow \mathbb{C}, \qquad \gamma(t) = t.$$

In view of the residue theorem, for any r > 2 we have the relation

$$\int_{\gamma_r} f(z)dz + \int_{-r}^r f(x)dx = 2\pi i \left(\mathbf{Rez}_i f + \mathbf{Rez}_{2i} f \right)$$

leading to

$$\lim_{r \to \infty} \int_{\gamma_r} f(z)dz + \int_{-\infty}^{\infty} f(x)dx = 2\pi i \left(\mathbf{Re} \mathbf{z}_i f + \mathbf{Re} \mathbf{z}_{2i} f \right). \tag{10.8}$$

Since

$$|z\,f(z)| = \frac{|z^3|}{|z^2+1|\cdot|z^2+4|} = \frac{|z^3|}{|z^2-(-1)|\cdot|z^2-(-4)|} \le \frac{|z|^3}{||z|^2-1|\cdot||z|^2-4|}$$

we have

$$\lim_{z \to \infty} z f(z) = 0$$

and in view of the result presented at pag. 56-8

$$\lim_{r \to \infty} \int_{\gamma_r} f(z) dz = 0.$$

Since f(-x) = f(x), from the relation (10.8) we obtain

$$\int_0^\infty f(x)dx = \pi i \left(\mathbf{Rez}_i f + \mathbf{Rez}_{2i} f \right).$$

But

$$\mathbf{Rez}_{i} = \lim_{z \to i} (z - i) f(z) = \lim_{z \to i} \frac{z^{2}}{(z + i)(z^{2} + 4)} = \frac{i}{6}$$

$$\mathbf{Rez}_{2i} = \lim_{z \to 2i} (z - 2i) f(z) = \lim_{z \to 2i} \frac{z^{2}}{(z^{2} + 1)(z + 2i)} = -\frac{i}{3}$$

and hence

$$\int_0^\infty f(x)dx = \pi i \left(\frac{i}{6} - \frac{i}{3}\right) = \frac{\pi}{6}.$$

10.6.11 MATHEMATICA: Residue[f[z], {z, a}], Integrate[f[x], {x, a, b}]

$$In[1] := Residue[z^2/((z^2 + 1) (z^2 + 4)), \{z, I\}] \qquad \qquad \mapsto \quad Out$$

In[2]:=Residue[
$$z^2/((z^2 + 1) (z^2 + 4))$$
, {z, I}] $\mapsto \text{Out}[2] = -\frac{i}{3}$

In[3]:=Integrate[x^2/((x^2 + 1) (x^2 + 4)), {x, 0, Infinity}]
$$\mapsto \text{Out}[3] = \frac{i}{6}$$

10.6.12 Exercise. Prove that

$$1 \ge \frac{\sin t}{t} \ge \frac{2}{\pi}$$
 for any $t \in \left[0, \frac{\pi}{2}\right]$.

Solution. The function

$$\varphi: \left[0, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}, \qquad \varphi(t) = \frac{\sin t}{t}$$

is a decreasing function because

$$\varphi'(t) = \frac{t \cos t - \sin t}{t^2} \le 0.$$

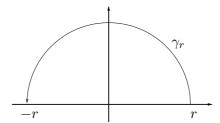


Figure 10.39: The paths γ_r .

10.6.13 Proposition (Jordan's lemma). If the continuous function

$$f: \{ z = x + yi \mid y \ge 0 \} \longrightarrow \mathbb{C}$$

is such that

$$\lim_{z \to \infty} f(z) = 0 \tag{10.9}$$

and

$$\gamma_r: [0, \pi] \longrightarrow \mathbb{C}, \qquad \gamma_r(t) = r e^{it}$$

(Figure 10.39) then

$$\lim_{r \to \infty} \int_{\gamma_r} f(z) e^{iz} dz = 0$$

Proof. Let $\varepsilon > 0$. From the relation (10.9) it follows that there is $\varepsilon > 0$ such that

$$r > r_{\varepsilon} \qquad \Longrightarrow \qquad |f(r e^{it})| < \frac{2\varepsilon}{\pi}$$

and

$$\begin{split} \left| \int_{\gamma_r} f(z) \, \mathrm{e}^{\mathrm{i}z} \, dz \right| &= \left| \int_0^\pi f(r \, \mathrm{e}^{\mathrm{i}t}) \, \mathrm{e}^{\mathrm{i}r(\cos t + \mathrm{i}\sin t)} \mathrm{i}r \mathrm{e}^{\mathrm{i}t} dt \right| \\ &\leq \int_0^\pi |f(r \, \mathrm{e}^{\mathrm{i}t})| \, \mathrm{e}^{-r\sin t} \, r \, dt \leq \frac{2\varepsilon}{\pi} r \int_0^\pi \mathrm{e}^{-r\sin t} \, dt \\ &\leq \frac{2\varepsilon}{\pi} r \int_0^\pi \mathrm{e}^{-r\frac{2}{\pi}t} \, dt = \frac{2\varepsilon}{\pi} r \frac{-\pi}{2r} \, \mathrm{e}^{-r\frac{2}{\pi}t} \Big|_0^{\frac{\pi}{2}} = \varepsilon (1 - \mathrm{e}^{-r}) \leq \varepsilon. \end{split}$$

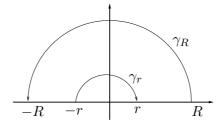


Figure 10.40: The path used in the case of Poisson's integral.

10.6.14 Exercise (Poisson's integral). Prove that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2} \tag{10.10}$$

Solution. Let 0 < r < R and the paths (Figure 10.40)

$$\gamma_R : [0, \pi] \longrightarrow \mathbb{C}, \qquad \gamma_R(t) = R e^{it}$$

$$\gamma_r : [0, \pi] \longrightarrow \mathbb{C}, \qquad \gamma_r(t) = r e^{i(\pi - t)}.$$

From the residue theorem (or Cauchy's theorem) it follows the relation

$$\int_{\gamma_R} \frac{\mathrm{e}^{\mathrm{i}z}}{z} \, dz + \int_{-R}^{-r} \frac{\mathrm{e}^{\mathrm{i}x}}{x} \, dx + \int_{\gamma_r} \frac{\mathrm{e}^{\mathrm{i}z}}{z} \, dz + \int_r^R \frac{\mathrm{e}^{\mathrm{i}x}}{x} \, dx = 0$$

which can also be written as

$$\int_{\gamma_R} \frac{\mathrm{e}^{\mathrm{i}z}}{z} \, dz + \int_{\gamma_r} \frac{\mathrm{e}^{\mathrm{i}z}}{z} \, dz + \int_r^R \frac{\mathrm{e}^{\mathrm{i}x} - \mathrm{e}^{-\mathrm{i}x}}{x} \, dx = 0$$

or

$$\int_{\gamma_R} \frac{e^{iz}}{z} dz + \int_{\gamma_r} \frac{1}{z} dz + \int_{\gamma_r} \frac{e^{iz} - 1}{z} dz + 2i \int_r^R \frac{\sin x}{x} dx = 0$$

By using the relation

$$\int_{\gamma_r} \frac{1}{z} \, dz = -\pi \mathrm{i}$$

and denoting by g an antiderivative of the function $f(z) = \frac{e^{iz}-1}{z}$ we get

$$\int_{\gamma_R} \frac{e^{iz}}{z} dz - \pi i + (g(r) - g(-r)) + 2i \int_r^R \frac{\sin x}{x} dx = 0.$$

Since, in view of Jordan's lemma,

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{\mathrm{e}^{\mathrm{i}z}}{z} = 0$$

for $R \to \infty$ and $r \to 0$ we get the relation

$$2i \int_0^\infty \frac{\sin x}{x} \, dx = \pi i.$$

10.6.15 MATHEMATICA: Integrate[f[x], {x, a, b}]

 $In[1]:=Integrate[Sin[x]/x, \{x, 0, Infinity\}] \mapsto Out[1]=\frac{\pi}{2}$

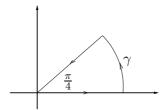


Figure 10.41: The path used in the case of Fresnel's integrals.

10.6.16 Fresnel's integrals. By integrating the function

$$f(z) = e^{iz^2}$$

along the path shown in Figure 10.41 one can prove [?] that

$$\int_0^\infty \cos x^2 dx = \int_0^\infty \sin x^2 dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.$$

10.6.17 MATHEMATICA: Integrate[f[x], {x, a, b}]

In[1]:=Integrate[Sin[x^2], {x, 0, Infinity}] \mapsto Out[1]= $\frac{\sqrt{\frac{\pi}{2}}}{2}$

 $In[2]:=Integrate[Cos[x^2], \{x, 0, Infinity\}] \quad \mapsto \quad Out[2]=\frac{\sqrt{\frac{\pi}{2}}}{2}$

10.6.18 Definition. Let $\varphi : \mathbb{R} \longrightarrow \mathbb{C}$. The function (if exists)

$$\mathcal{F}[\varphi]: \mathbb{R} \longrightarrow \mathbb{C}, \qquad \mathcal{F}[\varphi](\xi) = \int_{-\infty}^{\infty} e^{i\xi x} \varphi(x) dx$$

is called the Fourier transform of φ .

10.6.19 Exercise. Prouve that

$$\mathcal{F}[e^{-ax^2}](\xi) = \sqrt{\frac{\pi}{a}} e^{-\frac{\xi^2}{4a}}$$

for any $a \in (0, \infty)$.

Solution. We have

$$\mathcal{F}[e^{-ax^2}](\xi) = \int_{-\infty}^{\infty} e^{-ax^2} e^{i\xi x} dx = \int_{-\infty}^{\infty} e^{-ax^2 + i\xi x} dx = e^{-\frac{\xi^2}{4a}} \int_{-\infty}^{\infty} e^{-a(x - i\frac{\xi}{2a})^2} dx.$$

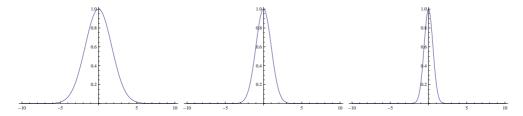


Figure 10.42: The functions $e^{-\frac{3}{2}x^2}$, $e^{-\frac{1}{2}x^2}$, $e^{-\frac{1}{6}x^2}$.

By starting from the integral

$$\int_{-r}^{r} e^{-at^{2}} dt + \int_{r}^{r-i\frac{\xi}{2a}} e^{-az^{2}} dz - \int_{-r-i\frac{\xi}{2a}}^{r-i\frac{\xi}{2a}} e^{-az^{2}} dz + \int_{-r-i\frac{\xi}{2a}}^{-r} e^{-az^{2}} dz = 0$$

of the function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \qquad f(z) = e^{-az^2}$$

along the rectangular path shown in Figure 10.43 we prouve that

$$\int_{-\infty}^{\infty} e^{-a\left(t - i\frac{\xi}{2a}\right)^2} dt = \int_{-\infty}^{\infty} e^{-at^2} dt = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\frac{\pi}{a}}.$$

We have

$$\lim_{r \to \infty} \int_{-r}^{r} e^{-at^2} dt = \int_{-\infty}^{\infty} e^{-at^2} dt.$$

By choosing for the linear path connecting r with $r - \mathrm{i} \frac{\xi}{2a}$ the parametrization

$$\gamma_1: [0,1] \longrightarrow \mathbb{C}, \qquad \gamma_1(t) = r - it \frac{\xi}{2a}$$

we obtain the relation

$$\int_{r}^{r-i\frac{\xi}{2a}} e^{-az^{2}} dz = \int_{0}^{1} e^{-a\left(r-it\frac{\xi}{2a}\right)^{2}} (-i) \frac{\xi}{2a} dt = -i\frac{\xi}{2a} e^{-ar^{2}} \int_{0}^{1} e^{irt\xi + \frac{t^{2}\xi^{2}}{4a}} dt$$

whence

$$\lim_{r \to \infty} \int_r^{r - i\frac{\xi}{2a}} e^{-az^2} dz = 0.$$

In a similar way one can prove that

$$\lim_{r \to \infty} \int_{-r - i\frac{\xi}{2a}}^{-r} e^{-az^2} dz = 0.$$

By choosing for the linear path connecting $-r - i\frac{\xi}{2a}$ with $r - i\frac{\xi}{2a}$ the parametrization

$$\gamma_2: [-r, r] \longrightarrow \mathbb{C}, \qquad \gamma_2(t) = t - i\frac{\xi}{2a}$$

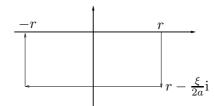


Figure 10.43: The used rectangular path.

we obtain the relation

$$\int_{-r-i\frac{\xi}{2a}}^{r-i\frac{\xi}{2a}} e^{-az^2} dz = \int_{-r}^{r} e^{-a\left(t-i\frac{\xi}{2a}\right)^2} dt$$

whence

$$\lim_{r \to \infty} \int_{-r - i\frac{\xi}{2a}}^{r - i\frac{\xi}{2a}} e^{-az^2} dz = \int_{-\infty}^{\infty} e^{-a\left(t - i\frac{\xi}{2a}\right)^2} dt.$$

10.6.20 MATHEMATICA: The used definition $\mathcal{F}[\varphi](x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx} \varphi(t) dt$ In[1]:=FourierTransform[Exp[-t^2], t, x] \mapsto Out[1]= $\frac{e^{-\frac{x^2}{4}}}{\sqrt{2}}$