COMPLEX ANALYSIS - Solved Problems 2

Nicolae Cotfas, version 03 June 2025 (for future updates see https://unibuc.ro/user/nicolae.cotfas/)

PROBLEMS

Problem 1

Compute:

$$1a$$
 $(2-3i)^2 + (\overline{1+i}) + \frac{2-i}{1+i} + i^9 + |3+4i|$.

$$1b$$
 $e^{i\frac{\pi}{4}} + e^{2-\pi i/3} + \cos(2i)$.

$$1c$$
 $(z^4 + \frac{1}{z^2} - \cos z + z^3 e^{-iz})'$.

$$1d \log(2-2i)$$
.

Problem 2

Compute the residues of the functions

$$2a$$
 $f: \mathbb{C} \setminus \{0, i\} \to \mathbb{C}, \quad f(z) = \frac{1}{z(z-i)^2}$

in the corresponding singular points.

Problem 3

Compute the integrals

$$\begin{array}{c|c} \boxed{3a} & I_0 = \int\limits_{\gamma_0} (1-2\bar{z})dz, \\ & \text{where} \quad \gamma_0 : [0,1] \to \mathbb{C}, \quad \gamma_0(t) = 1-t+t\mathrm{i}. \end{array}$$

$$\begin{array}{ll}
\boxed{3b} & I_1 = \int\limits_{\gamma_1} \frac{1}{z(z-\pi \mathrm{i})^2} dz, \\
& \text{where} \quad \gamma_1 : [0, 2\pi] \to \mathbb{C}, \quad \gamma_1(t) = 3\cos t + 2\mathrm{i} \sin t.
\end{array}$$

Problem 4

Compute the integral $I = \int_{-1+x^2}^{\infty} \frac{1}{1+x^2} dx$

4b- by using the theorem of residues.

SOME DEFINITIONS AND THEOREMS

D1 Definition

$$\begin{aligned} &(x_1+y_1\mathrm{i})(x_2+y_2\mathrm{i}) = (x_1x_2-y_1y_2) + (x_1y_2+x_2y_1)\mathrm{i} \\ &\overline{x+y}\mathrm{i} = x-y\mathrm{i}, \\ &|x+y\mathrm{i}| = \sqrt{x^2+y^2}, \\ &|z_1-z_2| = \text{distance between } z_1 \text{ and } z_2, \\ &|z| = \text{distance between } z \text{ and } 0, \\ &\mathrm{e}^{\mathrm{i}t} \stackrel{\mathrm{def}}{=} \cos t + \mathrm{i} \sin t \qquad \text{(Euler's formula)}, \\ &\mathrm{e}^{x+y\mathrm{i}} = \mathrm{e}^x \cos y + \mathrm{i} \, \mathrm{e}^x \sin y, \\ &z = |z| \, \mathrm{e}^{\mathrm{i} \arg z}, \qquad \text{where} \qquad -\pi < \arg z \le \pi, \\ &\cos z = \frac{1}{2} (\mathrm{e}^{\mathrm{i}z} + \mathrm{e}^{-\mathrm{i}z}), \\ &\sin z = \frac{1}{2\mathrm{i}} (\mathrm{e}^{\mathrm{i}z} - \mathrm{e}^{-\mathrm{i}z}), \\ &\log z = \ln |z| + \mathrm{i} \arg z, \qquad \log_k z = \ln |z| + \mathrm{i} (\arg z + 2k\pi). \end{aligned}$$

$D2 \mid \mathbf{Definition} \ \, \mathrm{Let} \ D \subseteq \mathbb{C} \ \, \mathrm{be} \ \, \mathrm{an} \ \, \mathrm{open} \ \, \mathrm{set}, \ \, \mathrm{and} \ \, z_0 \in D.$

A function $f:D\longrightarrow \mathbb{C}$ is there exists and is finite $\operatorname{complex-differentiable} \stackrel{\operatorname{def}}{\Longleftrightarrow}$ $f'(z_0) \stackrel{\text{def}}{=} \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ (\mathbb{C} -differentiable) at z_0

D3 Definition

 $f: D \to \mathbb{C}$ defined on an open set D is called \mathbb{C} -differentiable if (or holomorphic function)

f is \mathbb{C} -differentiable at any point $z_0 \in D$.

T1 Theorem

$$\begin{array}{ll} (f\pm g)' = f'\pm g' & (z^n)' = nz^{n-1} \\ (fg)' = f'g + fg' & (\mathrm{e}^z)' = \mathrm{e}^z \\ \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2} & (\sin z)' = \cos z \\ (f(\varphi(z))' = f'(\varphi(z))\,\varphi'(z) & (\cos z)' = -\sin z. \end{array}$$

 Theorem
$$\begin{array}{ll} \frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots \text{ for } |z| < 1 \end{array}$$

T2 Theorem

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots \text{ for } |z| < 1$$

$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots \text{ for any } z$$

D4 **Definition**. Let $D \subseteq \mathbb{C}$ be an open set,

 $f: D \longrightarrow \mathbb{C}$ be a continuous function, $\gamma:[a,b]\longrightarrow D$ be a path of class C^1 .

The complex line integral of f along γ is $\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$

T3 Theorem

$$g: D \to \mathbb{C} \text{ is a primitive of } f \\ \text{(that is } g' = f) \end{cases} \Rightarrow \boxed{\int_{\gamma} f(z) \, dz = g(\gamma(b)) - g(\gamma(a))}$$

If $f:D\to\mathbb{C}$ admits a primitive and γ is closed, then $\int f(z) dz = 0$.

D5 | **Definition** Let D be an open set and $f:D\to\mathbb{C}$ holomorphic.

$$z_0 \in \mathbb{C} \setminus D$$
 is an isolated $z_0 \in \mathbb{C} \setminus D$ is an isolated if $z_0 \in \mathbb{C} \setminus D$ is a zero of multiplicity $z_0 \in D$ is a zero of and $z_0 \in D$ is a zero of $z_0 \in$

a pole of order k of f if z_0 is a zero of multiplicity k of $\frac{1}{f}$.

T4 Theorem Let D be an open set and $f:D\longrightarrow \mathbb{C}$ holomorphic.

there exists a unique Laurent series such that z_0 is a an isolated $\Rightarrow \left| f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n, \right|$ for z satisfying $0 < |z - z_0| < r$. singular point and $\{z \mid 0 < |z - z_0| < r\} \subset D$

The number $\left| \mathbf{Res}_{z_0} f \stackrel{\text{def}}{=} a_{-1} \right|$ is the **residue** of f in z_0 .

T5 | Theorem

and

If z_0 pole of order k, then around z_0 the function fadmits an expansion of the form

> $f(z) = \frac{a_{-k}}{(z-z_0)^k} + \dots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \dots$ $\operatorname{Res}_{z_0} f = \frac{1}{(k-1)!} \lim_{z \to z_0} ((z-z_0)^k f(z))^{(k-1)}$

D6 Definition (Index of a point z_0 with respect to a path). For a closed path γ not passing through z_0 ,

 $n(z_0, \gamma) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-z_0} dz$ shows how many turns around z_0, γ makes.

D7 | **Definition**. Let D be an open set .

A closed path $\gamma:[a,b]\to D$ is called homotopic to zero in D if γ can be continuously deformed inside D up to a constant path (a path having as image just a point).

T6 Theorem of Residues. For an open set $D \subseteq \mathbb{C}$:

 $f: D \longrightarrow \mathbb{C}$ holomorphic function $\Rightarrow \begin{vmatrix} \int_{\gamma} f(z)dz = \\ = 2\pi i \sum_{z \in S} n(z, \gamma) \mathbf{Res}_{z} f \end{vmatrix}$ S set of isolated singular points γ path homotopic to zero in $D \cup S$

T7 Lemma 1. For $\gamma_r : [\alpha, \beta] \to \mathbb{C}, \ \gamma_r(t) = r e^{it}$ $\lim_{z \to \infty} z f(z) = 0 \Rightarrow \lim_{r \to \infty} \int_{\gamma_r} f(z) dz = 0$

$$\left[\lim_{z \to \infty} z f(z) = 0\right] \Rightarrow \left[\lim_{r \to \infty} \int_{\gamma_r} f(z) dz = 0\right]$$

SOLUTIONS

Problem 1

By using D1, we get 1a $(2-3i)^2 = 4-12i - 9 = -5-12i$ $(\overline{1+i})=1-i$ $\frac{2-i}{1+i} = \frac{(1-i)(2-i)}{(1-i)(1+i)} = \frac{1-3i}{2},$ $i^9 = i^8 i = (i^4)^2 i = i,$ $|3+4i| = \sqrt{3^2+4^2} = 5$

whence

$$(2-3i)^2 + (\overline{1+i}) + \frac{1-3i}{1+i} + i^9 + |3+4i| = \frac{3-27i}{2}$$

By using D1, we get $e^{i\frac{\pi}{4}} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2},$ $e^{2-i\frac{\pi}{3}} = e^2 e^{-i\frac{\pi}{3}} = e^2 (\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}) = \frac{e^2}{2} - i\frac{e^2\sqrt{3}}{2},$ $\cos(2i) = \frac{e^{-2} + e^2}{2},$ whence $e^{i\frac{\pi}{4}} + e^{2-i\frac{\pi}{3}} + \cos(2i) = \frac{\sqrt{2} + 2e^2 - e^{-2}}{2} + i\frac{\sqrt{2} - e^2\sqrt{3}}{2}$

1c By using D1, we obtain $(z^4 + \frac{1}{z^2} - \cos z + z^3 e^{-iz})' = 4z^3 - \frac{2}{z^3} + \sin z + 3z^2 e^{-iz} - iz^3 e^{-iz}.$

By using D1, we get $\log(2-2i) = \ln|2-2i| + i \arg(2-2i) = \ln(2\sqrt{2}) - i\frac{\pi}{4}$

Problem 2

We use T5 and D1. The singular points are 0 and i. $z_0 = 0$ is a pole of order 1, and consequently

$$\begin{split} \mathbf{Res}_0 f &= \frac{1}{0!} \lim_{z \to 0} z f(z) = \lim_{z \to 0} z \frac{1}{z(z-\mathrm{i})^2} \\ &= \lim_{z \to 0} \frac{1}{(z-\mathrm{i})^2} = \frac{1}{(-\mathrm{i})^2} = -1. \\ z_1 &= \mathrm{i} \text{ is a pole of order 2, and consequently} \end{split}$$

$$\mathbf{Res}_{i} f = \frac{1}{1!} \lim_{z \to i} ((z - i)^{2} f(z))' = \lim_{z \to i} ((z - i)^{2} \frac{1}{z(z - i)^{2}})'$$
$$= \lim_{z \to i} (\frac{1}{z})' = \lim_{z \to i} (-\frac{1}{z^{2}}) = -\frac{1}{i^{2}} = 1.$$

2bWe use T2 and T4. The only singular point is π . It is not a pole. So, we have to use the Laurent series of q. By looking for a representation of z+i of the form $z+i=\alpha(z-\pi)+\beta$

we get

$$z+i=(z-\pi)+i+\pi$$
.

 $\mathbf{Res}_{\pi}g$ is the coefficient of $\frac{1}{z-\pi}$ from the Laurent expansion of g around the point π .

By direct computation, we get

 $q(z) = (z+i)e^{\frac{1}{z-\pi}} = [(z-\pi)+i+\pi]$ $\times \left[1 + \frac{1}{1!} \frac{1}{z - \pi} + \frac{1}{2!} \frac{1}{(z - \pi)^2} + \frac{1}{3!} \frac{1}{(z - \pi)^3} + \frac{1}{4!} \frac{1}{(z - \pi)^4} + \ldots\right]$ $= \dots + \left(\frac{1}{2!} + \mathbf{i} + \pi\right) \frac{1}{z - \pi} + \dots$ Consequently, $\mathbf{Res}_{\pi} g = \frac{1}{2} + \pi + \mathbf{i}$.

Problem 3

By using the definition D4 of the complex integral we get 3a $I_0 = \int (1-2\bar{z})dz = \int_0^1 [1-2(\overline{1-t+ti})](1-t+ti)'dt$ $= (i-1) \int_0^1 (-1+2t+2ti)dt = (i-1)(-t+t^2+t^2i)|_0^1$ =(i-1)(-1+1+i)=-1-i.

3bThrough the identification $\mathbb{C} \to \mathbb{R}^2$: $x+yi \mapsto (x,y)$, the image of the path γ_1 corresponds to the ellipsis

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

The singular points are 0 and πi , but only 0 is inside the ellipsis, and it is a pole of order 1.

By using the theorem of residues T6, we get.

$$\begin{split} I_1 &= \int\limits_{\gamma_1} \frac{1}{z(z-\pi \mathrm{i})^2} dz = 2\pi \mathrm{i} \mathbf{Res}_0 \frac{1}{z(z-\pi \mathrm{i})^2} \\ &= 2\pi \mathrm{i} \lim_{z \to 0} z \frac{1}{z(z-\pi \mathrm{i})^2} = 2\pi \mathrm{i} \lim_{z \to 0} \frac{1}{(z-\pi \mathrm{i})^2} = -\frac{2}{\pi} \mathrm{i}. \end{split}$$

Problem 4

4a | We have

$$I = \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \arctan x \Big|_{-\infty}^{\infty} = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi.$$

4b | The integral is convergent: at infinity the function $x \mapsto \frac{1}{1+x^2}$ has the same behaviour as $x \mapsto \frac{1}{x^2}$

$$\lim_{x \to \infty} \frac{\frac{1}{1+x^2}}{\frac{1}{x^2}} = 1.$$

We consider the the function

$$f: \mathbb{C} \setminus \{i, -i\} \to \mathbb{C}, \quad f(z) = \frac{1}{1+z^2}$$

whose singular isolated points are $z_0 = i$ and $z_1 = -i$. We use the theorem of residues T6 and the lemma T7. By integrating the function f along the closed path obtained by composing

$$\Gamma_r: [0, \pi] \longrightarrow \mathbb{C}, \ \Gamma_r(t) = r e^{it}$$

and

$$\gamma_r : [-r, r] \longrightarrow \mathbb{C}, \ \gamma_r(t) = t,$$

we get for r > 1 the relation

$$\int_{\Gamma} f(z)dz + \int_{-r}^{r} f(x)dx = 2\pi i \operatorname{Res}_{i} f.$$
 (*)

It is known that, for any complex numbers z_1 and z_2 , we have the inequality

$$||z_1| - |z_2|| \le |z_1 - z_2|.$$

From the relation

 $0 \leq |z\,f(z)| = \tfrac{|z|}{|1+z^2|} = \tfrac{|z|}{|1-(-z^2)|} \leq \tfrac{|z|}{|\,|1|-|-z^2|\,|} = \tfrac{|z|}{|\,1-|z|^2|\,|}$

$$\lim_{z \to \infty} \frac{|z|}{|1 - |z|^2|} = 0$$

it follows that

$$\lim_{z\to\infty}z\,f(z)\!=\!0$$
 and in view of lemma 1,

$$\lim_{r \to \infty} \int_{\Gamma} f(z) dz = 0$$

 $\lim_{r\to\infty}\int\limits_{\Gamma_r}f(z)dz=0.$ Consequently, for $r\to\infty$ the relation (*) becomes

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = 2\pi i \operatorname{Res}_{i} f.$$

The point $z_0 = i$ is a pole of order 1. By using T5, we obtain

$$\mathbf{Res}_{i} f = \mathbf{Res}_{i} \frac{1}{1+z^{2}} = \lim_{z \to i} (z - i) \frac{1}{(z-i)(z+i)} = \frac{1}{2i},$$

and

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi.$$